Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Heijboer
1
78 kgWeening
2
68 kgNuyens
3
68 kgStrauss
5
69 kgGilbert
10
75 kgLoosli
14
71 kgVansummeren
15
79 kgZonneveld
17
63 kgKohl
20
61 kgSteurs
21
77 kgMcLeod
22
66 kgCurvers
28
73 kgDrancourt
29
68 kgPedersen
30
62 kgGiling
31
72 kgDe Vocht
45
78 kgVan Hecke
49
69 kgDekkers
52
72 kgZaugg
59
58 kg
1
78 kgWeening
2
68 kgNuyens
3
68 kgStrauss
5
69 kgGilbert
10
75 kgLoosli
14
71 kgVansummeren
15
79 kgZonneveld
17
63 kgKohl
20
61 kgSteurs
21
77 kgMcLeod
22
66 kgCurvers
28
73 kgDrancourt
29
68 kgPedersen
30
62 kgGiling
31
72 kgDe Vocht
45
78 kgVan Hecke
49
69 kgDekkers
52
72 kgZaugg
59
58 kg
Weight (KG) →
Result →
79
58
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | HEIJBOER Mathieu | 78 |
2 | WEENING Pieter | 68 |
3 | NUYENS Nick | 68 |
5 | STRAUSS Marcel | 69 |
10 | GILBERT Philippe | 75 |
14 | LOOSLI David | 71 |
15 | VANSUMMEREN Johan | 79 |
17 | ZONNEVELD Thijs | 63 |
20 | KOHL Bernhard | 61 |
21 | STEURS Geert | 77 |
22 | MCLEOD Ian | 66 |
28 | CURVERS Roy | 73 |
29 | DRANCOURT Pierre | 68 |
30 | PEDERSEN Martin | 62 |
31 | GILING Bas | 72 |
45 | DE VOCHT Wim | 78 |
49 | VAN HECKE Preben | 69 |
52 | DEKKERS Hans | 72 |
59 | ZAUGG Oliver | 58 |