Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
McCarthy
1
63 kgLapthorne
2
70 kgFlakemore
3
72 kgBevin
4
75 kgVink
5
73 kgGate
7
71 kgGoesinnen
8
75 kgRosskopf
9
74 kgWatson
10
72 kgBertogliati
11
73 kgReijnen
13
63 kgOram
15
68 kgHowson
21
68 kgBewley
24
81 kgDyball
28
63 kgDougall
29
72 kgHill
31
67 kgScully
32
85 kgSmith
33
67 kgBajc
34
65 kgYates
39
73 kgArchbold
43
79 kgEarly
82
65 kg
1
63 kgLapthorne
2
70 kgFlakemore
3
72 kgBevin
4
75 kgVink
5
73 kgGate
7
71 kgGoesinnen
8
75 kgRosskopf
9
74 kgWatson
10
72 kgBertogliati
11
73 kgReijnen
13
63 kgOram
15
68 kgHowson
21
68 kgBewley
24
81 kgDyball
28
63 kgDougall
29
72 kgHill
31
67 kgScully
32
85 kgSmith
33
67 kgBajc
34
65 kgYates
39
73 kgArchbold
43
79 kgEarly
82
65 kg
Weight (KG) →
Result →
85
63
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | MCCARTHY Jay | 63 |
2 | LAPTHORNE Darren | 70 |
3 | FLAKEMORE Campbell | 72 |
4 | BEVIN Patrick | 75 |
5 | VINK Michael | 73 |
7 | GATE Aaron | 71 |
8 | GOESINNEN Floris | 75 |
9 | ROSSKOPF Joey | 74 |
10 | WATSON Calvin | 72 |
11 | BERTOGLIATI Rubens | 73 |
13 | REIJNEN Kiel | 63 |
15 | ORAM James | 68 |
21 | HOWSON Damien | 68 |
24 | BEWLEY Sam | 81 |
28 | DYBALL Benjamin | 63 |
29 | DOUGALL Nic | 72 |
31 | HILL Benjamin | 67 |
32 | SCULLY Tom | 85 |
33 | SMITH Dion | 67 |
34 | BAJC Andi | 65 |
39 | YATES Jeremy | 73 |
43 | ARCHBOLD Shane | 79 |
82 | EARLY James | 65 |