Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Lapthorne
1
70 kgMcCarthy
2
63 kgFlakemore
3
72 kgBevin
4
75 kgHowson
5
68 kgVink
7
73 kgGoesinnen
9
75 kgRosskopf
10
74 kgBertogliati
11
73 kgWatson
12
72 kgReijnen
14
63 kgGate
15
71 kgOram
19
68 kgBewley
23
81 kgDyball
27
63 kgDougall
29
72 kgArchbold
32
79 kgScully
33
85 kgYates
34
73 kgHill
35
67 kgSmith
39
67 kgBajc
56
65 kgEarly
82
65 kg
1
70 kgMcCarthy
2
63 kgFlakemore
3
72 kgBevin
4
75 kgHowson
5
68 kgVink
7
73 kgGoesinnen
9
75 kgRosskopf
10
74 kgBertogliati
11
73 kgWatson
12
72 kgReijnen
14
63 kgGate
15
71 kgOram
19
68 kgBewley
23
81 kgDyball
27
63 kgDougall
29
72 kgArchbold
32
79 kgScully
33
85 kgYates
34
73 kgHill
35
67 kgSmith
39
67 kgBajc
56
65 kgEarly
82
65 kg
Weight (KG) →
Result →
85
63
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | LAPTHORNE Darren | 70 |
2 | MCCARTHY Jay | 63 |
3 | FLAKEMORE Campbell | 72 |
4 | BEVIN Patrick | 75 |
5 | HOWSON Damien | 68 |
7 | VINK Michael | 73 |
9 | GOESINNEN Floris | 75 |
10 | ROSSKOPF Joey | 74 |
11 | BERTOGLIATI Rubens | 73 |
12 | WATSON Calvin | 72 |
14 | REIJNEN Kiel | 63 |
15 | GATE Aaron | 71 |
19 | ORAM James | 68 |
23 | BEWLEY Sam | 81 |
27 | DYBALL Benjamin | 63 |
29 | DOUGALL Nic | 72 |
32 | ARCHBOLD Shane | 79 |
33 | SCULLY Tom | 85 |
34 | YATES Jeremy | 73 |
35 | HILL Benjamin | 67 |
39 | SMITH Dion | 67 |
56 | BAJC Andi | 65 |
82 | EARLY James | 65 |