Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 100
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Bewley
1
81 kgBevin
3
75 kgMcCarthy
7
63 kgScully
8
85 kgHowson
13
68 kgGate
19
71 kgLapthorne
23
70 kgRosskopf
24
74 kgReijnen
26
63 kgSmith
27
67 kgHill
28
67 kgBertogliati
29
73 kgGoesinnen
31
75 kgFlakemore
32
72 kgVink
33
73 kgYates
34
73 kgOram
37
68 kgDyball
48
63 kgDougall
51
72 kgBajc
56
65 kgWatson
63
72 kgArchbold
67
79 kgEarly
82
65 kg
1
81 kgBevin
3
75 kgMcCarthy
7
63 kgScully
8
85 kgHowson
13
68 kgGate
19
71 kgLapthorne
23
70 kgRosskopf
24
74 kgReijnen
26
63 kgSmith
27
67 kgHill
28
67 kgBertogliati
29
73 kgGoesinnen
31
75 kgFlakemore
32
72 kgVink
33
73 kgYates
34
73 kgOram
37
68 kgDyball
48
63 kgDougall
51
72 kgBajc
56
65 kgWatson
63
72 kgArchbold
67
79 kgEarly
82
65 kg
Weight (KG) →
Result →
85
63
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | BEWLEY Sam | 81 |
3 | BEVIN Patrick | 75 |
7 | MCCARTHY Jay | 63 |
8 | SCULLY Tom | 85 |
13 | HOWSON Damien | 68 |
19 | GATE Aaron | 71 |
23 | LAPTHORNE Darren | 70 |
24 | ROSSKOPF Joey | 74 |
26 | REIJNEN Kiel | 63 |
27 | SMITH Dion | 67 |
28 | HILL Benjamin | 67 |
29 | BERTOGLIATI Rubens | 73 |
31 | GOESINNEN Floris | 75 |
32 | FLAKEMORE Campbell | 72 |
33 | VINK Michael | 73 |
34 | YATES Jeremy | 73 |
37 | ORAM James | 68 |
48 | DYBALL Benjamin | 63 |
51 | DOUGALL Nic | 72 |
56 | BAJC Andi | 65 |
63 | WATSON Calvin | 72 |
67 | ARCHBOLD Shane | 79 |
82 | EARLY James | 65 |