Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 78
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
McCarthy
2
63 kgBevin
3
75 kgGate
11
71 kgScully
13
85 kgVink
15
73 kgFlakemore
17
72 kgBajc
18
65 kgLapthorne
19
70 kgOram
25
68 kgWatson
26
72 kgRosskopf
32
74 kgGoesinnen
33
75 kgYates
38
73 kgHowson
45
68 kgBertogliati
47
73 kgHill
50
67 kgBewley
54
81 kgReijnen
58
63 kgDougall
60
72 kgDyball
62
63 kgSmith
64
67 kgArchbold
70
79 kgEarly
74
65 kg
2
63 kgBevin
3
75 kgGate
11
71 kgScully
13
85 kgVink
15
73 kgFlakemore
17
72 kgBajc
18
65 kgLapthorne
19
70 kgOram
25
68 kgWatson
26
72 kgRosskopf
32
74 kgGoesinnen
33
75 kgYates
38
73 kgHowson
45
68 kgBertogliati
47
73 kgHill
50
67 kgBewley
54
81 kgReijnen
58
63 kgDougall
60
72 kgDyball
62
63 kgSmith
64
67 kgArchbold
70
79 kgEarly
74
65 kg
Weight (KG) →
Result →
85
63
2
74
# | Rider | Weight (KG) |
---|---|---|
2 | MCCARTHY Jay | 63 |
3 | BEVIN Patrick | 75 |
11 | GATE Aaron | 71 |
13 | SCULLY Tom | 85 |
15 | VINK Michael | 73 |
17 | FLAKEMORE Campbell | 72 |
18 | BAJC Andi | 65 |
19 | LAPTHORNE Darren | 70 |
25 | ORAM James | 68 |
26 | WATSON Calvin | 72 |
32 | ROSSKOPF Joey | 74 |
33 | GOESINNEN Floris | 75 |
38 | YATES Jeremy | 73 |
45 | HOWSON Damien | 68 |
47 | BERTOGLIATI Rubens | 73 |
50 | HILL Benjamin | 67 |
54 | BEWLEY Sam | 81 |
58 | REIJNEN Kiel | 63 |
60 | DOUGALL Nic | 72 |
62 | DYBALL Benjamin | 63 |
64 | SMITH Dion | 67 |
70 | ARCHBOLD Shane | 79 |
74 | EARLY James | 65 |