Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Gate
1
71 kgMcCarthy
4
63 kgBevin
9
75 kgHill
10
67 kgArchbold
11
79 kgFlakemore
13
72 kgBajc
15
65 kgOram
16
68 kgSmith
17
67 kgWatson
18
72 kgVink
19
73 kgRosskopf
22
74 kgLapthorne
23
70 kgBertogliati
25
73 kgGoesinnen
27
75 kgDyball
28
63 kgReijnen
33
63 kgDougall
35
72 kgScully
36
85 kgBewley
39
81 kgYates
46
73 kgHowson
58
68 kgEarly
89
65 kg
1
71 kgMcCarthy
4
63 kgBevin
9
75 kgHill
10
67 kgArchbold
11
79 kgFlakemore
13
72 kgBajc
15
65 kgOram
16
68 kgSmith
17
67 kgWatson
18
72 kgVink
19
73 kgRosskopf
22
74 kgLapthorne
23
70 kgBertogliati
25
73 kgGoesinnen
27
75 kgDyball
28
63 kgReijnen
33
63 kgDougall
35
72 kgScully
36
85 kgBewley
39
81 kgYates
46
73 kgHowson
58
68 kgEarly
89
65 kg
Weight (KG) →
Result →
85
63
1
89
# | Rider | Weight (KG) |
---|---|---|
1 | GATE Aaron | 71 |
4 | MCCARTHY Jay | 63 |
9 | BEVIN Patrick | 75 |
10 | HILL Benjamin | 67 |
11 | ARCHBOLD Shane | 79 |
13 | FLAKEMORE Campbell | 72 |
15 | BAJC Andi | 65 |
16 | ORAM James | 68 |
17 | SMITH Dion | 67 |
18 | WATSON Calvin | 72 |
19 | VINK Michael | 73 |
22 | ROSSKOPF Joey | 74 |
23 | LAPTHORNE Darren | 70 |
25 | BERTOGLIATI Rubens | 73 |
27 | GOESINNEN Floris | 75 |
28 | DYBALL Benjamin | 63 |
33 | REIJNEN Kiel | 63 |
35 | DOUGALL Nic | 72 |
36 | SCULLY Tom | 85 |
39 | BEWLEY Sam | 81 |
46 | YATES Jeremy | 73 |
58 | HOWSON Damien | 68 |
89 | EARLY James | 65 |