Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 109
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Oram
3
68 kgLampier
6
68 kgKerby
7
71 kgRoe
8
66 kgBond
9
91 kgMccormick
11
72.5 kgAmbrose
13
66 kgChristensen
14
63 kgFouché
15
71 kgJones
16
75 kgNewbery
21
75 kgEvans
23
70 kgMudgway
24
65 kgSchreurs
32
69 kgReynolds
35
67 kgBerends
39
61 kgFitzwater
41
67 kgClancy
44
79 kgAzman
45
57 kgMunday
61
57 kgZakaria
73
59 kg
3
68 kgLampier
6
68 kgKerby
7
71 kgRoe
8
66 kgBond
9
91 kgMccormick
11
72.5 kgAmbrose
13
66 kgChristensen
14
63 kgFouché
15
71 kgJones
16
75 kgNewbery
21
75 kgEvans
23
70 kgMudgway
24
65 kgSchreurs
32
69 kgReynolds
35
67 kgBerends
39
61 kgFitzwater
41
67 kgClancy
44
79 kgAzman
45
57 kgMunday
61
57 kgZakaria
73
59 kg
Weight (KG) →
Result →
91
57
3
73
# | Rider | Weight (KG) |
---|---|---|
3 | ORAM James | 68 |
6 | LAMPIER Steven | 68 |
7 | KERBY Jordan | 71 |
8 | ROE Timothy | 66 |
9 | BOND Hamish | 91 |
11 | MCCORMICK Hayden | 72.5 |
13 | AMBROSE Scott | 66 |
14 | CHRISTENSEN Ryan | 63 |
15 | FOUCHÉ James | 71 |
16 | JONES Ollie | 75 |
21 | NEWBERY Dylan | 75 |
23 | EVANS Brad | 70 |
24 | MUDGWAY Luke | 65 |
32 | SCHREURS Hamish | 69 |
35 | REYNOLDS Aden | 67 |
39 | BERENDS Ethan | 61 |
41 | FITZWATER Matias | 67 |
44 | CLANCY Edward | 79 |
45 | AZMAN Muhamad Zawawi | 57 |
61 | MUNDAY Samuel | 57 |
73 | ZAKARIA Akmal Hakim | 59 |