Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 106
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Roe
1
66 kgEvans
3
70 kgLampier
6
68 kgAmbrose
8
66 kgMccormick
9
72.5 kgJones
14
75 kgOram
15
68 kgKerby
18
71 kgFouché
20
71 kgBond
21
91 kgChristensen
22
63 kgMudgway
28
65 kgClancy
34
79 kgSchreurs
40
69 kgNewbery
41
75 kgReynolds
43
67 kgFitzwater
44
67 kgBatt
46
76 kgBerends
51
61 kgAzman
53
57 kgCavanagh
57
72 kgMunday
64
57 kgZakaria
88
59 kg
1
66 kgEvans
3
70 kgLampier
6
68 kgAmbrose
8
66 kgMccormick
9
72.5 kgJones
14
75 kgOram
15
68 kgKerby
18
71 kgFouché
20
71 kgBond
21
91 kgChristensen
22
63 kgMudgway
28
65 kgClancy
34
79 kgSchreurs
40
69 kgNewbery
41
75 kgReynolds
43
67 kgFitzwater
44
67 kgBatt
46
76 kgBerends
51
61 kgAzman
53
57 kgCavanagh
57
72 kgMunday
64
57 kgZakaria
88
59 kg
Weight (KG) →
Result →
91
57
1
88
# | Rider | Weight (KG) |
---|---|---|
1 | ROE Timothy | 66 |
3 | EVANS Brad | 70 |
6 | LAMPIER Steven | 68 |
8 | AMBROSE Scott | 66 |
9 | MCCORMICK Hayden | 72.5 |
14 | JONES Ollie | 75 |
15 | ORAM James | 68 |
18 | KERBY Jordan | 71 |
20 | FOUCHÉ James | 71 |
21 | BOND Hamish | 91 |
22 | CHRISTENSEN Ryan | 63 |
28 | MUDGWAY Luke | 65 |
34 | CLANCY Edward | 79 |
40 | SCHREURS Hamish | 69 |
41 | NEWBERY Dylan | 75 |
43 | REYNOLDS Aden | 67 |
44 | FITZWATER Matias | 67 |
46 | BATT Ethan | 76 |
51 | BERENDS Ethan | 61 |
53 | AZMAN Muhamad Zawawi | 57 |
57 | CAVANAGH Ryan | 72 |
64 | MUNDAY Samuel | 57 |
88 | ZAKARIA Akmal Hakim | 59 |