Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 87
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Oram
1
68 kgLampier
3
68 kgRoe
4
66 kgMccormick
6
72.5 kgEvans
7
70 kgJones
11
75 kgAmbrose
13
66 kgChristensen
16
63 kgBond
17
91 kgFouché
18
71 kgKerby
22
71 kgSchreurs
26
69 kgReynolds
30
67 kgFitzwater
38
67 kgBerends
40
61 kgClancy
42
79 kgAzman
43
57 kgNewbery
44
75 kgMudgway
50
63 kgCavanagh
67
72 kgMunday
69
57 kgBatt
74
76 kgZakaria
85
59 kg
1
68 kgLampier
3
68 kgRoe
4
66 kgMccormick
6
72.5 kgEvans
7
70 kgJones
11
75 kgAmbrose
13
66 kgChristensen
16
63 kgBond
17
91 kgFouché
18
71 kgKerby
22
71 kgSchreurs
26
69 kgReynolds
30
67 kgFitzwater
38
67 kgBerends
40
61 kgClancy
42
79 kgAzman
43
57 kgNewbery
44
75 kgMudgway
50
63 kgCavanagh
67
72 kgMunday
69
57 kgBatt
74
76 kgZakaria
85
59 kg
Weight (KG) →
Result →
91
57
1
85
# | Rider | Weight (KG) |
---|---|---|
1 | ORAM James | 68 |
3 | LAMPIER Steven | 68 |
4 | ROE Timothy | 66 |
6 | MCCORMICK Hayden | 72.5 |
7 | EVANS Brad | 70 |
11 | JONES Ollie | 75 |
13 | AMBROSE Scott | 66 |
16 | CHRISTENSEN Ryan | 63 |
17 | BOND Hamish | 91 |
18 | FOUCHÉ James | 71 |
22 | KERBY Jordan | 71 |
26 | SCHREURS Hamish | 69 |
30 | REYNOLDS Aden | 67 |
38 | FITZWATER Matias | 67 |
40 | BERENDS Ethan | 61 |
42 | CLANCY Edward | 79 |
43 | AZMAN Muhamad Zawawi | 57 |
44 | NEWBERY Dylan | 75 |
50 | MUDGWAY Luke | 63 |
67 | CAVANAGH Ryan | 72 |
69 | MUNDAY Samuel | 57 |
74 | BATT Ethan | 76 |
85 | ZAKARIA Akmal Hakim | 59 |