Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 77
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Oram
2
68 kgLampier
3
68 kgRoe
4
66 kgMccormick
6
72.5 kgEvans
8
70 kgChristensen
11
63 kgBond
13
91 kgJones
15
75 kgFouché
17
71 kgAmbrose
20
66 kgKerby
22
71 kgSchreurs
25
69 kgReynolds
27
67 kgFitzwater
33
67 kgBerends
42
61 kgAzman
49
57 kgNewbery
54
75 kgClancy
55
79 kgMunday
69
57 kgCavanagh
71
72 kgMudgway
72
65 kgZakaria
75
59 kgBatt
92
76 kg
2
68 kgLampier
3
68 kgRoe
4
66 kgMccormick
6
72.5 kgEvans
8
70 kgChristensen
11
63 kgBond
13
91 kgJones
15
75 kgFouché
17
71 kgAmbrose
20
66 kgKerby
22
71 kgSchreurs
25
69 kgReynolds
27
67 kgFitzwater
33
67 kgBerends
42
61 kgAzman
49
57 kgNewbery
54
75 kgClancy
55
79 kgMunday
69
57 kgCavanagh
71
72 kgMudgway
72
65 kgZakaria
75
59 kgBatt
92
76 kg
Weight (KG) →
Result →
91
57
2
92
# | Rider | Weight (KG) |
---|---|---|
2 | ORAM James | 68 |
3 | LAMPIER Steven | 68 |
4 | ROE Timothy | 66 |
6 | MCCORMICK Hayden | 72.5 |
8 | EVANS Brad | 70 |
11 | CHRISTENSEN Ryan | 63 |
13 | BOND Hamish | 91 |
15 | JONES Ollie | 75 |
17 | FOUCHÉ James | 71 |
20 | AMBROSE Scott | 66 |
22 | KERBY Jordan | 71 |
25 | SCHREURS Hamish | 69 |
27 | REYNOLDS Aden | 67 |
33 | FITZWATER Matias | 67 |
42 | BERENDS Ethan | 61 |
49 | AZMAN Muhamad Zawawi | 57 |
54 | NEWBERY Dylan | 75 |
55 | CLANCY Edward | 79 |
69 | MUNDAY Samuel | 57 |
71 | CAVANAGH Ryan | 72 |
72 | MUDGWAY Luke | 65 |
75 | ZAKARIA Akmal Hakim | 59 |
92 | BATT Ethan | 76 |