Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 97
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Oram
1
68 kgLampier
3
68 kgRoe
4
66 kgMccormick
5
72.5 kgEvans
7
70 kgJones
11
75 kgAmbrose
13
66 kgChristensen
15
63 kgFouché
17
71 kgBond
18
91 kgKerby
22
71 kgSchreurs
26
69 kgReynolds
29
67 kgFitzwater
37
67 kgBerends
39
61 kgClancy
40
79 kgAzman
42
57 kgNewbery
43
75 kgMudgway
50
65 kgCavanagh
64
72 kgMunday
66
57 kgZakaria
79
59 kg
1
68 kgLampier
3
68 kgRoe
4
66 kgMccormick
5
72.5 kgEvans
7
70 kgJones
11
75 kgAmbrose
13
66 kgChristensen
15
63 kgFouché
17
71 kgBond
18
91 kgKerby
22
71 kgSchreurs
26
69 kgReynolds
29
67 kgFitzwater
37
67 kgBerends
39
61 kgClancy
40
79 kgAzman
42
57 kgNewbery
43
75 kgMudgway
50
65 kgCavanagh
64
72 kgMunday
66
57 kgZakaria
79
59 kg
Weight (KG) →
Result →
91
57
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | ORAM James | 68 |
3 | LAMPIER Steven | 68 |
4 | ROE Timothy | 66 |
5 | MCCORMICK Hayden | 72.5 |
7 | EVANS Brad | 70 |
11 | JONES Ollie | 75 |
13 | AMBROSE Scott | 66 |
15 | CHRISTENSEN Ryan | 63 |
17 | FOUCHÉ James | 71 |
18 | BOND Hamish | 91 |
22 | KERBY Jordan | 71 |
26 | SCHREURS Hamish | 69 |
29 | REYNOLDS Aden | 67 |
37 | FITZWATER Matias | 67 |
39 | BERENDS Ethan | 61 |
40 | CLANCY Edward | 79 |
42 | AZMAN Muhamad Zawawi | 57 |
43 | NEWBERY Dylan | 75 |
50 | MUDGWAY Luke | 65 |
64 | CAVANAGH Ryan | 72 |
66 | MUNDAY Samuel | 57 |
79 | ZAKARIA Akmal Hakim | 59 |