Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Evans
4
70 kgMudgway
5
65 kgJones
7
75 kgMccormick
9
72.5 kgMunday
13
57 kgChristensen
14
63 kgLampier
16
68 kgRoe
19
66 kgAzman
27
57 kgOram
28
68 kgBerends
29
61 kgZakaria
35
59 kgFouché
40
71 kgReynolds
41
67 kgFitzwater
42
67 kgSchreurs
44
69 kgNewbery
47
75 kgBond
48
91 kgClancy
53
79 kgAmbrose
54
66 kgCavanagh
57
72 kgKerby
60
71 kg
4
70 kgMudgway
5
65 kgJones
7
75 kgMccormick
9
72.5 kgMunday
13
57 kgChristensen
14
63 kgLampier
16
68 kgRoe
19
66 kgAzman
27
57 kgOram
28
68 kgBerends
29
61 kgZakaria
35
59 kgFouché
40
71 kgReynolds
41
67 kgFitzwater
42
67 kgSchreurs
44
69 kgNewbery
47
75 kgBond
48
91 kgClancy
53
79 kgAmbrose
54
66 kgCavanagh
57
72 kgKerby
60
71 kg
Weight (KG) →
Result →
91
57
4
60
# | Rider | Weight (KG) |
---|---|---|
4 | EVANS Brad | 70 |
5 | MUDGWAY Luke | 65 |
7 | JONES Ollie | 75 |
9 | MCCORMICK Hayden | 72.5 |
13 | MUNDAY Samuel | 57 |
14 | CHRISTENSEN Ryan | 63 |
16 | LAMPIER Steven | 68 |
19 | ROE Timothy | 66 |
27 | AZMAN Muhamad Zawawi | 57 |
28 | ORAM James | 68 |
29 | BERENDS Ethan | 61 |
35 | ZAKARIA Akmal Hakim | 59 |
40 | FOUCHÉ James | 71 |
41 | REYNOLDS Aden | 67 |
42 | FITZWATER Matias | 67 |
44 | SCHREURS Hamish | 69 |
47 | NEWBERY Dylan | 75 |
48 | BOND Hamish | 91 |
53 | CLANCY Edward | 79 |
54 | AMBROSE Scott | 66 |
57 | CAVANAGH Ryan | 72 |
60 | KERBY Jordan | 71 |