Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 86
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Kerby
2
71 kgBond
5
91 kgLampier
9
68 kgChristensen
10
63 kgFouché
11
71 kgRoe
12
66 kgOram
14
68 kgMccormick
15
72.5 kgAmbrose
17
66 kgJones
20
75 kgMudgway
21
65 kgNewbery
22
75 kgEvans
26
70 kgBerends
27
61 kgZakaria
40
59 kgFitzwater
42
67 kgMunday
50
57 kgReynolds
58
67 kgAzman
74
57 kgSchreurs
75
69 kgClancy
76
79 kg
2
71 kgBond
5
91 kgLampier
9
68 kgChristensen
10
63 kgFouché
11
71 kgRoe
12
66 kgOram
14
68 kgMccormick
15
72.5 kgAmbrose
17
66 kgJones
20
75 kgMudgway
21
65 kgNewbery
22
75 kgEvans
26
70 kgBerends
27
61 kgZakaria
40
59 kgFitzwater
42
67 kgMunday
50
57 kgReynolds
58
67 kgAzman
74
57 kgSchreurs
75
69 kgClancy
76
79 kg
Weight (KG) →
Result →
91
57
2
76
# | Rider | Weight (KG) |
---|---|---|
2 | KERBY Jordan | 71 |
5 | BOND Hamish | 91 |
9 | LAMPIER Steven | 68 |
10 | CHRISTENSEN Ryan | 63 |
11 | FOUCHÉ James | 71 |
12 | ROE Timothy | 66 |
14 | ORAM James | 68 |
15 | MCCORMICK Hayden | 72.5 |
17 | AMBROSE Scott | 66 |
20 | JONES Ollie | 75 |
21 | MUDGWAY Luke | 65 |
22 | NEWBERY Dylan | 75 |
26 | EVANS Brad | 70 |
27 | BERENDS Ethan | 61 |
40 | ZAKARIA Akmal Hakim | 59 |
42 | FITZWATER Matias | 67 |
50 | MUNDAY Samuel | 57 |
58 | REYNOLDS Aden | 67 |
74 | AZMAN Muhamad Zawawi | 57 |
75 | SCHREURS Hamish | 69 |
76 | CLANCY Edward | 79 |