Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Mudgway
2
65 kgKerby
10
71 kgReynolds
18
67 kgSchreurs
19
69 kgMunday
20
57 kgOram
21
68 kgClancy
26
79 kgAzman
28
57 kgFouché
29
71 kgFitzwater
30
67 kgLampier
34
68 kgChristensen
35
63 kgEvans
36
70 kgBerends
37
61 kgAmbrose
41
66 kgNewbery
43
75 kgBond
51
91 kgRoe
53
66 kgMccormick
60
72.5 kgZakaria
64
59 kgJones
71
75 kg
2
65 kgKerby
10
71 kgReynolds
18
67 kgSchreurs
19
69 kgMunday
20
57 kgOram
21
68 kgClancy
26
79 kgAzman
28
57 kgFouché
29
71 kgFitzwater
30
67 kgLampier
34
68 kgChristensen
35
63 kgEvans
36
70 kgBerends
37
61 kgAmbrose
41
66 kgNewbery
43
75 kgBond
51
91 kgRoe
53
66 kgMccormick
60
72.5 kgZakaria
64
59 kgJones
71
75 kg
Weight (KG) →
Result →
91
57
2
71
# | Rider | Weight (KG) |
---|---|---|
2 | MUDGWAY Luke | 65 |
10 | KERBY Jordan | 71 |
18 | REYNOLDS Aden | 67 |
19 | SCHREURS Hamish | 69 |
20 | MUNDAY Samuel | 57 |
21 | ORAM James | 68 |
26 | CLANCY Edward | 79 |
28 | AZMAN Muhamad Zawawi | 57 |
29 | FOUCHÉ James | 71 |
30 | FITZWATER Matias | 67 |
34 | LAMPIER Steven | 68 |
35 | CHRISTENSEN Ryan | 63 |
36 | EVANS Brad | 70 |
37 | BERENDS Ethan | 61 |
41 | AMBROSE Scott | 66 |
43 | NEWBERY Dylan | 75 |
51 | BOND Hamish | 91 |
53 | ROE Timothy | 66 |
60 | MCCORMICK Hayden | 72.5 |
64 | ZAKARIA Akmal Hakim | 59 |
71 | JONES Ollie | 75 |