Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 33
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Mccormick
1
72.5 kgStannard
3
74 kgVink
4
73 kgOram
6
68 kgHarper
7
67 kgStewart
8
71 kgDavids
14
72 kgThièry
16
67 kgClark
17
68 kgDonohoe
19
62 kgCoyle
22
74 kgFitzwater
26
67 kgGibson
38
76 kgO'Brien
39
79 kgNewbery
40
75 kgEvans
41
70 kgLampier
48
68 kgBissegger
51
78 kgScott
63
80 kgKerby
67
71 kgMudgway
68
65 kgSuter
79
70 kg
1
72.5 kgStannard
3
74 kgVink
4
73 kgOram
6
68 kgHarper
7
67 kgStewart
8
71 kgDavids
14
72 kgThièry
16
67 kgClark
17
68 kgDonohoe
19
62 kgCoyle
22
74 kgFitzwater
26
67 kgGibson
38
76 kgO'Brien
39
79 kgNewbery
40
75 kgEvans
41
70 kgLampier
48
68 kgBissegger
51
78 kgScott
63
80 kgKerby
67
71 kgMudgway
68
65 kgSuter
79
70 kg
Weight (KG) →
Result →
80
62
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | MCCORMICK Hayden | 72.5 |
3 | STANNARD Robert | 74 |
4 | VINK Michael | 73 |
6 | ORAM James | 68 |
7 | HARPER Chris | 67 |
8 | STEWART Thomas | 71 |
14 | DAVIDS Brendon | 72 |
16 | THIÈRY Cyrille | 67 |
17 | CLARK Boris | 68 |
19 | DONOHOE Alistair | 62 |
22 | COYLE Jesse | 74 |
26 | FITZWATER Matias | 67 |
38 | GIBSON Matthew | 76 |
39 | O'BRIEN Kelland | 79 |
40 | NEWBERY Dylan | 75 |
41 | EVANS Brad | 70 |
48 | LAMPIER Steven | 68 |
51 | BISSEGGER Stefan | 78 |
63 | SCOTT Cameron | 80 |
67 | KERBY Jordan | 71 |
68 | MUDGWAY Luke | 65 |
79 | SUTER Gaël | 70 |