Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.8 * weight + 160
This means that on average for every extra kilogram weight a rider loses -1.8 positions in the result.
Mccormick
2
72.5 kgStannard
3
74 kgVink
4
73 kgCoyle
6
74 kgHarper
7
67 kgDavids
8
72 kgFreiberg
13
82 kgScott
16
80 kgGibson
17
76 kgStewart
19
71 kgBissegger
20
78 kgMudgway
28
63 kgO'Brien
34
79 kgFitzwater
37
67 kgClark
39
68 kgOram
44
68 kgLampier
47
68 kgThièry
48
67 kgDonohoe
49
62 kgGirdlestone
64
64 kgEvans
66
70 kgNewbery
71
75 kgKerby
77
71 kgSuter
79
70 kg
2
72.5 kgStannard
3
74 kgVink
4
73 kgCoyle
6
74 kgHarper
7
67 kgDavids
8
72 kgFreiberg
13
82 kgScott
16
80 kgGibson
17
76 kgStewart
19
71 kgBissegger
20
78 kgMudgway
28
63 kgO'Brien
34
79 kgFitzwater
37
67 kgClark
39
68 kgOram
44
68 kgLampier
47
68 kgThièry
48
67 kgDonohoe
49
62 kgGirdlestone
64
64 kgEvans
66
70 kgNewbery
71
75 kgKerby
77
71 kgSuter
79
70 kg
Weight (KG) →
Result →
82
62
2
79
# | Rider | Weight (KG) |
---|---|---|
2 | MCCORMICK Hayden | 72.5 |
3 | STANNARD Robert | 74 |
4 | VINK Michael | 73 |
6 | COYLE Jesse | 74 |
7 | HARPER Chris | 67 |
8 | DAVIDS Brendon | 72 |
13 | FREIBERG Michael | 82 |
16 | SCOTT Cameron | 80 |
17 | GIBSON Matthew | 76 |
19 | STEWART Thomas | 71 |
20 | BISSEGGER Stefan | 78 |
28 | MUDGWAY Luke | 63 |
34 | O'BRIEN Kelland | 79 |
37 | FITZWATER Matias | 67 |
39 | CLARK Boris | 68 |
44 | ORAM James | 68 |
47 | LAMPIER Steven | 68 |
48 | THIÈRY Cyrille | 67 |
49 | DONOHOE Alistair | 62 |
64 | GIRDLESTONE Keagan | 64 |
66 | EVANS Brad | 70 |
71 | NEWBERY Dylan | 75 |
77 | KERBY Jordan | 71 |
79 | SUTER Gaël | 70 |