Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 166
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Mccormick
2
72.5 kgStannard
3
74 kgVink
4
73 kgCoyle
6
74 kgHarper
7
67 kgDavids
8
72 kgScott
13
80 kgGibson
14
76 kgFreiberg
15
82 kgStewart
17
71 kgBissegger
18
78 kgMudgway
26
65 kgO'Brien
33
79 kgFitzwater
36
67 kgClark
38
68 kgOram
43
68 kgLampier
46
68 kgThièry
47
67 kgDonohoe
48
62 kgGirdlestone
64
64 kgEvans
66
70 kgNewbery
71
75 kgKerby
77
71 kgSuter
79
70 kg
2
72.5 kgStannard
3
74 kgVink
4
73 kgCoyle
6
74 kgHarper
7
67 kgDavids
8
72 kgScott
13
80 kgGibson
14
76 kgFreiberg
15
82 kgStewart
17
71 kgBissegger
18
78 kgMudgway
26
65 kgO'Brien
33
79 kgFitzwater
36
67 kgClark
38
68 kgOram
43
68 kgLampier
46
68 kgThièry
47
67 kgDonohoe
48
62 kgGirdlestone
64
64 kgEvans
66
70 kgNewbery
71
75 kgKerby
77
71 kgSuter
79
70 kg
Weight (KG) →
Result →
82
62
2
79
# | Rider | Weight (KG) |
---|---|---|
2 | MCCORMICK Hayden | 72.5 |
3 | STANNARD Robert | 74 |
4 | VINK Michael | 73 |
6 | COYLE Jesse | 74 |
7 | HARPER Chris | 67 |
8 | DAVIDS Brendon | 72 |
13 | SCOTT Cameron | 80 |
14 | GIBSON Matthew | 76 |
15 | FREIBERG Michael | 82 |
17 | STEWART Thomas | 71 |
18 | BISSEGGER Stefan | 78 |
26 | MUDGWAY Luke | 65 |
33 | O'BRIEN Kelland | 79 |
36 | FITZWATER Matias | 67 |
38 | CLARK Boris | 68 |
43 | ORAM James | 68 |
46 | LAMPIER Steven | 68 |
47 | THIÈRY Cyrille | 67 |
48 | DONOHOE Alistair | 62 |
64 | GIRDLESTONE Keagan | 64 |
66 | EVANS Brad | 70 |
71 | NEWBERY Dylan | 75 |
77 | KERBY Jordan | 71 |
79 | SUTER Gaël | 70 |