Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 51
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Mccormick
2
72.5 kgStannard
3
74 kgVink
4
73 kgHarper
5
67 kgDavids
8
72 kgCoyle
9
74 kgScott
10
80 kgMudgway
11
63 kgNewbery
14
75 kgKerby
15
71 kgGibson
17
76 kgEvans
25
70 kgOram
26
68 kgFitzwater
28
67 kgClark
29
68 kgDonohoe
30
62 kgLampier
39
68 kgSuter
47
70 kgGirdlestone
60
64 kgStewart
64
71 kgThièry
75
67 kgBissegger
81
78 kgO'Brien
88
79 kgFreiberg
92
82 kg
2
72.5 kgStannard
3
74 kgVink
4
73 kgHarper
5
67 kgDavids
8
72 kgCoyle
9
74 kgScott
10
80 kgMudgway
11
63 kgNewbery
14
75 kgKerby
15
71 kgGibson
17
76 kgEvans
25
70 kgOram
26
68 kgFitzwater
28
67 kgClark
29
68 kgDonohoe
30
62 kgLampier
39
68 kgSuter
47
70 kgGirdlestone
60
64 kgStewart
64
71 kgThièry
75
67 kgBissegger
81
78 kgO'Brien
88
79 kgFreiberg
92
82 kg
Weight (KG) →
Result →
82
62
2
92
# | Rider | Weight (KG) |
---|---|---|
2 | MCCORMICK Hayden | 72.5 |
3 | STANNARD Robert | 74 |
4 | VINK Michael | 73 |
5 | HARPER Chris | 67 |
8 | DAVIDS Brendon | 72 |
9 | COYLE Jesse | 74 |
10 | SCOTT Cameron | 80 |
11 | MUDGWAY Luke | 63 |
14 | NEWBERY Dylan | 75 |
15 | KERBY Jordan | 71 |
17 | GIBSON Matthew | 76 |
25 | EVANS Brad | 70 |
26 | ORAM James | 68 |
28 | FITZWATER Matias | 67 |
29 | CLARK Boris | 68 |
30 | DONOHOE Alistair | 62 |
39 | LAMPIER Steven | 68 |
47 | SUTER Gaël | 70 |
60 | GIRDLESTONE Keagan | 64 |
64 | STEWART Thomas | 71 |
75 | THIÈRY Cyrille | 67 |
81 | BISSEGGER Stefan | 78 |
88 | O'BRIEN Kelland | 79 |
92 | FREIBERG Michael | 82 |