Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.4 * weight - 126
This means that on average for every extra kilogram weight a rider loses 2.4 positions in the result.
Scott
1
80 kgMudgway
2
65 kgGibson
5
76 kgStannard
6
74 kgVink
7
73 kgHarper
12
67 kgMccormick
16
72.5 kgEvans
18
70 kgOram
19
68 kgFitzwater
23
67 kgClark
24
68 kgDonohoe
25
62 kgLampier
34
68 kgSuter
42
70 kgGirdlestone
59
64 kgDavids
62
72 kgStewart
64
71 kgThièry
77
67 kgCoyle
79
74 kgKerby
84
71 kgBissegger
87
78 kgNewbery
91
75 kgO'Brien
95
79 kgFreiberg
104
82 kg
1
80 kgMudgway
2
65 kgGibson
5
76 kgStannard
6
74 kgVink
7
73 kgHarper
12
67 kgMccormick
16
72.5 kgEvans
18
70 kgOram
19
68 kgFitzwater
23
67 kgClark
24
68 kgDonohoe
25
62 kgLampier
34
68 kgSuter
42
70 kgGirdlestone
59
64 kgDavids
62
72 kgStewart
64
71 kgThièry
77
67 kgCoyle
79
74 kgKerby
84
71 kgBissegger
87
78 kgNewbery
91
75 kgO'Brien
95
79 kgFreiberg
104
82 kg
Weight (KG) →
Result →
82
62
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | SCOTT Cameron | 80 |
2 | MUDGWAY Luke | 65 |
5 | GIBSON Matthew | 76 |
6 | STANNARD Robert | 74 |
7 | VINK Michael | 73 |
12 | HARPER Chris | 67 |
16 | MCCORMICK Hayden | 72.5 |
18 | EVANS Brad | 70 |
19 | ORAM James | 68 |
23 | FITZWATER Matias | 67 |
24 | CLARK Boris | 68 |
25 | DONOHOE Alistair | 62 |
34 | LAMPIER Steven | 68 |
42 | SUTER Gaël | 70 |
59 | GIRDLESTONE Keagan | 64 |
62 | DAVIDS Brendon | 72 |
64 | STEWART Thomas | 71 |
77 | THIÈRY Cyrille | 67 |
79 | COYLE Jesse | 74 |
84 | KERBY Jordan | 71 |
87 | BISSEGGER Stefan | 78 |
91 | NEWBERY Dylan | 75 |
95 | O'BRIEN Kelland | 79 |
104 | FREIBERG Michael | 82 |