Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2 * weight + 182
This means that on average for every extra kilogram weight a rider loses -2 positions in the result.
Gibson
1
76 kgScott
4
80 kgStannard
6
74 kgVink
10
73 kgLampier
12
68 kgFreiberg
13
82 kgBissegger
21
78 kgMudgway
23
65 kgDavids
26
72 kgMccormick
27
72.5 kgHarper
30
67 kgFitzwater
32
67 kgClark
40
68 kgStewart
42
71 kgOram
45
68 kgEvans
46
70 kgThièry
52
67 kgDonohoe
63
62 kgO'Brien
68
79 kgNewbery
69
75 kgCoyle
71
74 kgGirdlestone
98
64 kgKerby
101
71 kgSuter
105
70 kg
1
76 kgScott
4
80 kgStannard
6
74 kgVink
10
73 kgLampier
12
68 kgFreiberg
13
82 kgBissegger
21
78 kgMudgway
23
65 kgDavids
26
72 kgMccormick
27
72.5 kgHarper
30
67 kgFitzwater
32
67 kgClark
40
68 kgStewart
42
71 kgOram
45
68 kgEvans
46
70 kgThièry
52
67 kgDonohoe
63
62 kgO'Brien
68
79 kgNewbery
69
75 kgCoyle
71
74 kgGirdlestone
98
64 kgKerby
101
71 kgSuter
105
70 kg
Weight (KG) →
Result →
82
62
1
105
# | Rider | Weight (KG) |
---|---|---|
1 | GIBSON Matthew | 76 |
4 | SCOTT Cameron | 80 |
6 | STANNARD Robert | 74 |
10 | VINK Michael | 73 |
12 | LAMPIER Steven | 68 |
13 | FREIBERG Michael | 82 |
21 | BISSEGGER Stefan | 78 |
23 | MUDGWAY Luke | 65 |
26 | DAVIDS Brendon | 72 |
27 | MCCORMICK Hayden | 72.5 |
30 | HARPER Chris | 67 |
32 | FITZWATER Matias | 67 |
40 | CLARK Boris | 68 |
42 | STEWART Thomas | 71 |
45 | ORAM James | 68 |
46 | EVANS Brad | 70 |
52 | THIÈRY Cyrille | 67 |
63 | DONOHOE Alistair | 62 |
68 | O'BRIEN Kelland | 79 |
69 | NEWBERY Dylan | 75 |
71 | COYLE Jesse | 74 |
98 | GIRDLESTONE Keagan | 64 |
101 | KERBY Jordan | 71 |
105 | SUTER Gaël | 70 |