Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 78
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Stannard
2
74 kgMccormick
4
72.5 kgOram
6
68 kgVink
7
73 kgHarper
8
67 kgStewart
9
71 kgClark
16
68 kgThièry
19
67 kgDonohoe
20
62 kgDavids
21
72 kgCoyle
26
74 kgFitzwater
30
67 kgMudgway
36
65 kgO'Brien
43
79 kgNewbery
44
75 kgGibson
45
76 kgEvans
49
70 kgGirdlestone
51
64 kgFreiberg
57
82 kgLampier
58
68 kgBissegger
63
78 kgKerby
76
71 kgSuter
78
70 kgScott
81
80 kg
2
74 kgMccormick
4
72.5 kgOram
6
68 kgVink
7
73 kgHarper
8
67 kgStewart
9
71 kgClark
16
68 kgThièry
19
67 kgDonohoe
20
62 kgDavids
21
72 kgCoyle
26
74 kgFitzwater
30
67 kgMudgway
36
65 kgO'Brien
43
79 kgNewbery
44
75 kgGibson
45
76 kgEvans
49
70 kgGirdlestone
51
64 kgFreiberg
57
82 kgLampier
58
68 kgBissegger
63
78 kgKerby
76
71 kgSuter
78
70 kgScott
81
80 kg
Weight (KG) →
Result →
82
62
2
81
# | Rider | Weight (KG) |
---|---|---|
2 | STANNARD Robert | 74 |
4 | MCCORMICK Hayden | 72.5 |
6 | ORAM James | 68 |
7 | VINK Michael | 73 |
8 | HARPER Chris | 67 |
9 | STEWART Thomas | 71 |
16 | CLARK Boris | 68 |
19 | THIÈRY Cyrille | 67 |
20 | DONOHOE Alistair | 62 |
21 | DAVIDS Brendon | 72 |
26 | COYLE Jesse | 74 |
30 | FITZWATER Matias | 67 |
36 | MUDGWAY Luke | 65 |
43 | O'BRIEN Kelland | 79 |
44 | NEWBERY Dylan | 75 |
45 | GIBSON Matthew | 76 |
49 | EVANS Brad | 70 |
51 | GIRDLESTONE Keagan | 64 |
57 | FREIBERG Michael | 82 |
58 | LAMPIER Steven | 68 |
63 | BISSEGGER Stefan | 78 |
76 | KERBY Jordan | 71 |
78 | SUTER Gaël | 70 |
81 | SCOTT Cameron | 80 |