Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 94
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Kerby
1
71 kgStewart
3
71 kgMccormick
4
72.5 kgOram
5
68 kgScott
6
80 kgBissegger
7
78 kgGibson
10
76 kgEvans
13
70 kgVink
15
73 kgStannard
17
74 kgLampier
21
68 kgClark
27
68 kgThièry
28
67 kgHarper
35
67 kgDonohoe
37
62 kgFitzwater
44
67 kgDavids
52
72 kgCoyle
57
74 kgO'Brien
67
79 kgNewbery
69
75 kgMudgway
81
65 kgSuter
83
70 kg
1
71 kgStewart
3
71 kgMccormick
4
72.5 kgOram
5
68 kgScott
6
80 kgBissegger
7
78 kgGibson
10
76 kgEvans
13
70 kgVink
15
73 kgStannard
17
74 kgLampier
21
68 kgClark
27
68 kgThièry
28
67 kgHarper
35
67 kgDonohoe
37
62 kgFitzwater
44
67 kgDavids
52
72 kgCoyle
57
74 kgO'Brien
67
79 kgNewbery
69
75 kgMudgway
81
65 kgSuter
83
70 kg
Weight (KG) →
Result →
80
62
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | KERBY Jordan | 71 |
3 | STEWART Thomas | 71 |
4 | MCCORMICK Hayden | 72.5 |
5 | ORAM James | 68 |
6 | SCOTT Cameron | 80 |
7 | BISSEGGER Stefan | 78 |
10 | GIBSON Matthew | 76 |
13 | EVANS Brad | 70 |
15 | VINK Michael | 73 |
17 | STANNARD Robert | 74 |
21 | LAMPIER Steven | 68 |
27 | CLARK Boris | 68 |
28 | THIÈRY Cyrille | 67 |
35 | HARPER Chris | 67 |
37 | DONOHOE Alistair | 62 |
44 | FITZWATER Matias | 67 |
52 | DAVIDS Brendon | 72 |
57 | COYLE Jesse | 74 |
67 | O'BRIEN Kelland | 79 |
69 | NEWBERY Dylan | 75 |
81 | MUDGWAY Luke | 65 |
83 | SUTER Gaël | 70 |