Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Kergozou De La Boessiere
1
74 kgPithie
2
74 kgPatterson
3
76 kgRitchie
4
75 kgJackson
6
75 kgGrave
8
69 kgBidwell
14
61 kgArchbold
16
79 kgDrury
19
68 kgStewart
21
70 kgGough
23
71 kgBennett
24
58 kgBurnett
25
73 kgPrice
28
77 kgLiu
30
63 kgJones
32
75 kgGilbertson
38
68 kgNisbet
40
68 kgBurbage
45
66 kgChristensen
55
63 kgFitzwater
61
67 kgGroube
66
69 kgWatts
69
72 kgPolley
70
82 kg
1
74 kgPithie
2
74 kgPatterson
3
76 kgRitchie
4
75 kgJackson
6
75 kgGrave
8
69 kgBidwell
14
61 kgArchbold
16
79 kgDrury
19
68 kgStewart
21
70 kgGough
23
71 kgBennett
24
58 kgBurnett
25
73 kgPrice
28
77 kgLiu
30
63 kgJones
32
75 kgGilbertson
38
68 kgNisbet
40
68 kgBurbage
45
66 kgChristensen
55
63 kgFitzwater
61
67 kgGroube
66
69 kgWatts
69
72 kgPolley
70
82 kg
Weight (KG) →
Result →
82
58
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | KERGOZOU DE LA BOESSIERE Nick | 74 |
2 | PITHIE Laurence | 74 |
3 | PATTERSON Zakk | 76 |
4 | RITCHIE Samuel | 75 |
6 | JACKSON George | 75 |
8 | GRAVE Oliver | 69 |
14 | BIDWELL Adam | 61 |
16 | ARCHBOLD Shane | 79 |
19 | DRURY Karl | 68 |
21 | STEWART Mark | 70 |
23 | GOUGH Regan | 71 |
24 | BENNETT George | 58 |
25 | BURNETT Josh | 73 |
28 | PRICE Corby | 77 |
30 | LIU David | 63 |
32 | JONES Ollie | 75 |
38 | GILBERTSON Theo | 68 |
40 | NISBET Callum | 68 |
45 | BURBAGE Tyler | 66 |
55 | CHRISTENSEN Ryan | 63 |
61 | FITZWATER Matias | 67 |
66 | GROUBE Carne | 69 |
69 | WATTS Kiaan | 72 |
70 | POLLEY Jack | 82 |