Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 35
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Stewart
1
70 kgJones
2
75 kgBennett
3
58 kgPithie
4
74 kgBidwell
6
61 kgBurnett
7
73 kgBurbage
16
66 kgRitchie
18
75 kgPrice
20
77 kgJackson
23
75 kgDrury
26
68 kgGilbertson
32
68 kgGroube
33
69 kgGrave
34
69 kgChristensen
37
63 kgWatts
42
72 kgGough
45
71 kgArchbold
46
79 kgPolley
51
82 kgFitzwater
55
67 kgPatterson
56
76 kgNisbet
60
68 kgKergozou De La Boessiere
63
74 kg
1
70 kgJones
2
75 kgBennett
3
58 kgPithie
4
74 kgBidwell
6
61 kgBurnett
7
73 kgBurbage
16
66 kgRitchie
18
75 kgPrice
20
77 kgJackson
23
75 kgDrury
26
68 kgGilbertson
32
68 kgGroube
33
69 kgGrave
34
69 kgChristensen
37
63 kgWatts
42
72 kgGough
45
71 kgArchbold
46
79 kgPolley
51
82 kgFitzwater
55
67 kgPatterson
56
76 kgNisbet
60
68 kgKergozou De La Boessiere
63
74 kg
Weight (KG) →
Result →
82
58
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | STEWART Mark | 70 |
2 | JONES Ollie | 75 |
3 | BENNETT George | 58 |
4 | PITHIE Laurence | 74 |
6 | BIDWELL Adam | 61 |
7 | BURNETT Josh | 73 |
16 | BURBAGE Tyler | 66 |
18 | RITCHIE Samuel | 75 |
20 | PRICE Corby | 77 |
23 | JACKSON George | 75 |
26 | DRURY Karl | 68 |
32 | GILBERTSON Theo | 68 |
33 | GROUBE Carne | 69 |
34 | GRAVE Oliver | 69 |
37 | CHRISTENSEN Ryan | 63 |
42 | WATTS Kiaan | 72 |
45 | GOUGH Regan | 71 |
46 | ARCHBOLD Shane | 79 |
51 | POLLEY Jack | 82 |
55 | FITZWATER Matias | 67 |
56 | PATTERSON Zakk | 76 |
60 | NISBET Callum | 68 |
63 | KERGOZOU DE LA BOESSIERE Nick | 74 |