Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Stewart
1
70 kgJones
2
75 kgPithie
3
74 kgBennett
4
58 kgJackson
7
75 kgRitchie
11
75 kgBurbage
13
66 kgPrice
15
77 kgBurnett
16
73 kgBidwell
19
61 kgGrave
24
69 kgDrury
29
68 kgChristensen
30
63 kgGilbertson
32
68 kgGroube
33
69 kgGough
34
71 kgWatts
39
72 kgPatterson
48
76 kgFitzwater
50
67 kgKergozou De La Boessiere
54
74 kgPolley
56
82 kgNisbet
58
68 kg
1
70 kgJones
2
75 kgPithie
3
74 kgBennett
4
58 kgJackson
7
75 kgRitchie
11
75 kgBurbage
13
66 kgPrice
15
77 kgBurnett
16
73 kgBidwell
19
61 kgGrave
24
69 kgDrury
29
68 kgChristensen
30
63 kgGilbertson
32
68 kgGroube
33
69 kgGough
34
71 kgWatts
39
72 kgPatterson
48
76 kgFitzwater
50
67 kgKergozou De La Boessiere
54
74 kgPolley
56
82 kgNisbet
58
68 kg
Weight (KG) →
Result →
82
58
1
58
# | Rider | Weight (KG) |
---|---|---|
1 | STEWART Mark | 70 |
2 | JONES Ollie | 75 |
3 | PITHIE Laurence | 74 |
4 | BENNETT George | 58 |
7 | JACKSON George | 75 |
11 | RITCHIE Samuel | 75 |
13 | BURBAGE Tyler | 66 |
15 | PRICE Corby | 77 |
16 | BURNETT Josh | 73 |
19 | BIDWELL Adam | 61 |
24 | GRAVE Oliver | 69 |
29 | DRURY Karl | 68 |
30 | CHRISTENSEN Ryan | 63 |
32 | GILBERTSON Theo | 68 |
33 | GROUBE Carne | 69 |
34 | GOUGH Regan | 71 |
39 | WATTS Kiaan | 72 |
48 | PATTERSON Zakk | 76 |
50 | FITZWATER Matias | 67 |
54 | KERGOZOU DE LA BOESSIERE Nick | 74 |
56 | POLLEY Jack | 82 |
58 | NISBET Callum | 68 |