Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 78
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Gough
1
71 kgPithie
3
74 kgKergozou De La Boessiere
4
74 kgJackson
5
75 kgStewart
6
70 kgPatterson
7
76 kgChristensen
10
63 kgJones
12
75 kgGrave
15
69 kgRitchie
16
75 kgWatts
19
72 kgBennett
22
58 kgPrice
26
77 kgBurnett
27
73 kgBidwell
31
61 kgGilbertson
40
68 kgGroube
41
69 kgFitzwater
42
67 kgDrury
44
68 kgPolley
46
82 kgBurbage
59
66 kgNisbet
61
68 kg
1
71 kgPithie
3
74 kgKergozou De La Boessiere
4
74 kgJackson
5
75 kgStewart
6
70 kgPatterson
7
76 kgChristensen
10
63 kgJones
12
75 kgGrave
15
69 kgRitchie
16
75 kgWatts
19
72 kgBennett
22
58 kgPrice
26
77 kgBurnett
27
73 kgBidwell
31
61 kgGilbertson
40
68 kgGroube
41
69 kgFitzwater
42
67 kgDrury
44
68 kgPolley
46
82 kgBurbage
59
66 kgNisbet
61
68 kg
Weight (KG) →
Result →
82
58
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | GOUGH Regan | 71 |
3 | PITHIE Laurence | 74 |
4 | KERGOZOU DE LA BOESSIERE Nick | 74 |
5 | JACKSON George | 75 |
6 | STEWART Mark | 70 |
7 | PATTERSON Zakk | 76 |
10 | CHRISTENSEN Ryan | 63 |
12 | JONES Ollie | 75 |
15 | GRAVE Oliver | 69 |
16 | RITCHIE Samuel | 75 |
19 | WATTS Kiaan | 72 |
22 | BENNETT George | 58 |
26 | PRICE Corby | 77 |
27 | BURNETT Josh | 73 |
31 | BIDWELL Adam | 61 |
40 | GILBERTSON Theo | 68 |
41 | GROUBE Carne | 69 |
42 | FITZWATER Matias | 67 |
44 | DRURY Karl | 68 |
46 | POLLEY Jack | 82 |
59 | BURBAGE Tyler | 66 |
61 | NISBET Callum | 68 |