Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 20
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Oram
1
68 kgBurnett
2
73 kgvan Engelen
3
51 kgOliver
4
71 kgPhounsavath
9
67 kgClark
11
68 kgLebas
17
65 kgCarstensen
18
69 kgHeffernan
21
60 kgBower
23
63 kgLudman
27
66 kgPrice
28
77 kgMerseburg
30
75 kgNiquet-Olden
32
75 kgYamamoto
34
62 kgMudgway
36
65 kgWatts
37
72 kgGilbertson
39
68 kgGrave
40
69 kgMitchell
41
68 kgKergozou De La Boessiere
42
74 kg
1
68 kgBurnett
2
73 kgvan Engelen
3
51 kgOliver
4
71 kgPhounsavath
9
67 kgClark
11
68 kgLebas
17
65 kgCarstensen
18
69 kgHeffernan
21
60 kgBower
23
63 kgLudman
27
66 kgPrice
28
77 kgMerseburg
30
75 kgNiquet-Olden
32
75 kgYamamoto
34
62 kgMudgway
36
65 kgWatts
37
72 kgGilbertson
39
68 kgGrave
40
69 kgMitchell
41
68 kgKergozou De La Boessiere
42
74 kg
Weight (KG) →
Result →
77
51
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | ORAM James | 68 |
2 | BURNETT Josh | 73 |
3 | VAN ENGELEN Adne | 51 |
4 | OLIVER Ben | 71 |
9 | PHOUNSAVATH Ariya | 67 |
11 | CLARK Boris | 68 |
17 | LEBAS Thomas | 65 |
18 | CARSTENSEN Lucas | 69 |
21 | HEFFERNAN William | 60 |
23 | BOWER Lewis | 63 |
27 | LUDMAN Joshua | 66 |
28 | PRICE Corby | 77 |
30 | MERSEBURG Dominik | 75 |
32 | NIQUET-OLDEN Bentley | 75 |
34 | YAMAMOTO Genki | 62 |
36 | MUDGWAY Luke | 65 |
37 | WATTS Kiaan | 72 |
39 | GILBERTSON Theo | 68 |
40 | GRAVE Oliver | 69 |
41 | MITCHELL Finn | 68 |
42 | KERGOZOU DE LA BOESSIERE Nick | 74 |