Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Carstensen
1
69 kgMudgway
2
65 kgKergozou De La Boessiere
4
74 kgBower
5
63 kgOliver
6
71 kgBurnett
7
73 kgOram
10
68 kgWatts
11
72 kgvan Engelen
12
51 kgGilbertson
13
68 kgGrave
17
69 kgClark
19
68 kgMitchell
28
68 kgLudman
32
66 kgPhounsavath
34
67 kgLebas
35
65 kgYamamoto
37
62 kgMerseburg
38
75 kgNiquet-Olden
39
75 kgPrice
40
77 kgHeffernan
42
60 kg
1
69 kgMudgway
2
65 kgKergozou De La Boessiere
4
74 kgBower
5
63 kgOliver
6
71 kgBurnett
7
73 kgOram
10
68 kgWatts
11
72 kgvan Engelen
12
51 kgGilbertson
13
68 kgGrave
17
69 kgClark
19
68 kgMitchell
28
68 kgLudman
32
66 kgPhounsavath
34
67 kgLebas
35
65 kgYamamoto
37
62 kgMerseburg
38
75 kgNiquet-Olden
39
75 kgPrice
40
77 kgHeffernan
42
60 kg
Weight (KG) →
Result →
77
51
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | CARSTENSEN Lucas | 69 |
2 | MUDGWAY Luke | 65 |
4 | KERGOZOU DE LA BOESSIERE Nick | 74 |
5 | BOWER Lewis | 63 |
6 | OLIVER Ben | 71 |
7 | BURNETT Josh | 73 |
10 | ORAM James | 68 |
11 | WATTS Kiaan | 72 |
12 | VAN ENGELEN Adne | 51 |
13 | GILBERTSON Theo | 68 |
17 | GRAVE Oliver | 69 |
19 | CLARK Boris | 68 |
28 | MITCHELL Finn | 68 |
32 | LUDMAN Joshua | 66 |
34 | PHOUNSAVATH Ariya | 67 |
35 | LEBAS Thomas | 65 |
37 | YAMAMOTO Genki | 62 |
38 | MERSEBURG Dominik | 75 |
39 | NIQUET-OLDEN Bentley | 75 |
40 | PRICE Corby | 77 |
42 | HEFFERNAN William | 60 |