Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Van Wilder
1
64 kgSander Hansen
2
68 kgMarsman
4
75 kgVervloesem
5
65 kgPluimers
10
67 kgDe Meester
11
73 kgBraet
12
68 kgBerckmoes
14
61 kgDussek
15
67 kgSaver
17
76 kgKroonen
18
79 kgTulett
19
56 kgVandenbulcke
20
61 kgKrul
22
75 kgVan der Beken
25
66 kgHuys
31
77 kgKerckhaert
33
59 kgStockx
39
71 kgOmrzel
40
67 kgHollyman
52
59 kgHealy
62
65 kgLubbers
63
68 kg
1
64 kgSander Hansen
2
68 kgMarsman
4
75 kgVervloesem
5
65 kgPluimers
10
67 kgDe Meester
11
73 kgBraet
12
68 kgBerckmoes
14
61 kgDussek
15
67 kgSaver
17
76 kgKroonen
18
79 kgTulett
19
56 kgVandenbulcke
20
61 kgKrul
22
75 kgVan der Beken
25
66 kgHuys
31
77 kgKerckhaert
33
59 kgStockx
39
71 kgOmrzel
40
67 kgHollyman
52
59 kgHealy
62
65 kgLubbers
63
68 kg
Weight (KG) →
Result →
79
56
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | VAN WILDER Ilan | 64 |
2 | SANDER HANSEN Marcus | 68 |
4 | MARSMAN Tim | 75 |
5 | VERVLOESEM Xandres | 65 |
10 | PLUIMERS Rick | 67 |
11 | DE MEESTER Luca | 73 |
12 | BRAET Vito | 68 |
14 | BERCKMOES Jenno | 61 |
15 | DUSSEK Tom | 67 |
17 | SAVER Kasper | 76 |
18 | KROONEN Max | 79 |
19 | TULETT Ben | 56 |
20 | VANDENBULCKE Alex | 61 |
22 | KRUL Wessel | 75 |
25 | VAN DER BEKEN Aaron | 66 |
31 | HUYS Branko | 77 |
33 | KERCKHAERT Jochem | 59 |
39 | STOCKX Aaron | 71 |
40 | OMRZEL Aljaž | 67 |
52 | HOLLYMAN Mason | 59 |
62 | HEALY Ben | 65 |
63 | LUBBERS Christiaan | 68 |