Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 75
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Van den Broek
5
69 kgSentjens
6
85 kgDockx
7
61 kgScheldeman
14
66 kgŁątkowski
18
68 kgDe Bock
21
70 kgGrégoire
25
65 kgBush
26
58 kgChamberlain
27
74 kgGrindley
30
72 kgBlaise
31
73 kgOmrzel
33
62 kgDahl
50
68 kgSkok
51
65 kgVerstraete
58
59 kgWidar
60
54 kgWiśniewski
61
68 kgDe Ceuster
69
76 kgCrabbe
73
70 kgBrennan
82
68 kgBijlsma
84
68 kg
5
69 kgSentjens
6
85 kgDockx
7
61 kgScheldeman
14
66 kgŁątkowski
18
68 kgDe Bock
21
70 kgGrégoire
25
65 kgBush
26
58 kgChamberlain
27
74 kgGrindley
30
72 kgBlaise
31
73 kgOmrzel
33
62 kgDahl
50
68 kgSkok
51
65 kgVerstraete
58
59 kgWidar
60
54 kgWiśniewski
61
68 kgDe Ceuster
69
76 kgCrabbe
73
70 kgBrennan
82
68 kgBijlsma
84
68 kg
Weight (KG) →
Result →
85
54
5
84
# | Rider | Weight (KG) |
---|---|---|
5 | VAN DEN BROEK Axel | 69 |
6 | SENTJENS Sente | 85 |
7 | DOCKX Gilles | 61 |
14 | SCHELDEMAN Xander | 66 |
18 | ŁĄTKOWSKI Dawid | 68 |
21 | DE BOCK Aless | 70 |
25 | GRÉGOIRE Baptiste | 65 |
26 | BUSH Jacob | 58 |
27 | CHAMBERLAIN Oscar | 74 |
30 | GRINDLEY Sebastian | 72 |
31 | BLAISE Arthur | 73 |
33 | OMRZEL Jakob | 62 |
50 | DAHL Marius Innhaug | 68 |
51 | SKOK Marcel | 65 |
58 | VERSTRAETE Jenthe | 59 |
60 | WIDAR Jarno | 54 |
61 | WIŚNIEWSKI Szymon | 68 |
69 | DE CEUSTER Milan | 76 |
73 | CRABBE Tom | 70 |
82 | BRENNAN Matthew | 68 |
84 | BIJLSMA Sjoerd | 68 |