Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 16
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Sénéchal
1
77 kgMeurisse
2
71 kgReinhardt
3
72 kgPodlaski
5
68 kgKvasina
6
72 kgZoidl
9
63 kgBenetseder
11
65 kgPaďour
13
59 kgCieślik
15
65 kgVan Gestel
18
74 kgFrison
19
84 kgNikolaev
21
66 kgJaniaczyk
22
68 kgVan Aert
24
61 kgStash
25
77 kgEibegger
27
68 kgJurčo
28
69 kgBreen
30
74 kgVinjebo
31
67 kgTurek
33
72 kgBoroš
34
69 kgSisr
35
72 kg
1
77 kgMeurisse
2
71 kgReinhardt
3
72 kgPodlaski
5
68 kgKvasina
6
72 kgZoidl
9
63 kgBenetseder
11
65 kgPaďour
13
59 kgCieślik
15
65 kgVan Gestel
18
74 kgFrison
19
84 kgNikolaev
21
66 kgJaniaczyk
22
68 kgVan Aert
24
61 kgStash
25
77 kgEibegger
27
68 kgJurčo
28
69 kgBreen
30
74 kgVinjebo
31
67 kgTurek
33
72 kgBoroš
34
69 kgSisr
35
72 kg
Weight (KG) →
Result →
84
59
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | SÉNÉCHAL Florian | 77 |
2 | MEURISSE Xandro | 71 |
3 | REINHARDT Theo | 72 |
5 | PODLASKI Michał | 68 |
6 | KVASINA Matija | 72 |
9 | ZOIDL Riccardo | 63 |
11 | BENETSEDER Josef | 65 |
13 | PAĎOUR František | 59 |
15 | CIEŚLIK Paweł | 65 |
18 | VAN GESTEL Dries | 74 |
19 | FRISON Frederik | 84 |
21 | NIKOLAEV Sergey | 66 |
22 | JANIACZYK Błażej | 68 |
24 | VAN AERT Jan | 61 |
25 | STASH Mamyr | 77 |
27 | EIBEGGER Markus | 68 |
28 | JURČO Matej | 69 |
30 | BREEN Vegard | 74 |
31 | VINJEBO Emil Mielke | 67 |
33 | TUREK Daniel | 72 |
34 | BOROŠ Michael | 69 |
35 | SISR František | 72 |