Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Sénéchal
1
77 kgReinhardt
2
72 kgMeurisse
3
68 kgPodlaski
4
68 kgKvasina
6
72 kgZoidl
8
63 kgPaďour
9
59 kgBenetseder
10
65 kgCieślik
12
65 kgFrison
14
84 kgJaniaczyk
19
68 kgVan Gestel
21
74 kgStash
23
77 kgNikolaev
25
66 kgJurčo
27
69 kgEibegger
28
68 kgTurek
31
72 kgBoroš
32
69 kgSisr
33
72 kg
1
77 kgReinhardt
2
72 kgMeurisse
3
68 kgPodlaski
4
68 kgKvasina
6
72 kgZoidl
8
63 kgPaďour
9
59 kgBenetseder
10
65 kgCieślik
12
65 kgFrison
14
84 kgJaniaczyk
19
68 kgVan Gestel
21
74 kgStash
23
77 kgNikolaev
25
66 kgJurčo
27
69 kgEibegger
28
68 kgTurek
31
72 kgBoroš
32
69 kgSisr
33
72 kg
Weight (KG) →
Result →
84
59
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | SÉNÉCHAL Florian | 77 |
2 | REINHARDT Theo | 72 |
3 | MEURISSE Xandro | 68 |
4 | PODLASKI Michał | 68 |
6 | KVASINA Matija | 72 |
8 | ZOIDL Riccardo | 63 |
9 | PAĎOUR František | 59 |
10 | BENETSEDER Josef | 65 |
12 | CIEŚLIK Paweł | 65 |
14 | FRISON Frederik | 84 |
19 | JANIACZYK Błażej | 68 |
21 | VAN GESTEL Dries | 74 |
23 | STASH Mamyr | 77 |
25 | NIKOLAEV Sergey | 66 |
27 | JURČO Matej | 69 |
28 | EIBEGGER Markus | 68 |
31 | TUREK Daniel | 72 |
32 | BOROŠ Michael | 69 |
33 | SISR František | 72 |