Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Hoelgaard
1
77 kgVan Rooy
2
70 kgde Vries
4
70 kgCieślik
5
65 kgBuchmann
8
59 kgZieliński
10
61 kgPolnický
12
68 kgVan Meirhaeghe
13
71 kgSisr
15
72 kgKolář
17
90 kgGuerin
19
64 kgNych
21
74 kgWiśniowski
23
78 kgBaška
24
74 kgVan Gestel
25
74 kgFrison
28
84 kgTurek
31
72 kgKoch
32
75 kgKatyrin
35
65 kgKorošec
36
75 kgKorsæth
37
84 kgNikolaev
38
66 kgQuast
43
67 kg
1
77 kgVan Rooy
2
70 kgde Vries
4
70 kgCieślik
5
65 kgBuchmann
8
59 kgZieliński
10
61 kgPolnický
12
68 kgVan Meirhaeghe
13
71 kgSisr
15
72 kgKolář
17
90 kgGuerin
19
64 kgNych
21
74 kgWiśniowski
23
78 kgBaška
24
74 kgVan Gestel
25
74 kgFrison
28
84 kgTurek
31
72 kgKoch
32
75 kgKatyrin
35
65 kgKorošec
36
75 kgKorsæth
37
84 kgNikolaev
38
66 kgQuast
43
67 kg
Weight (KG) →
Result →
90
59
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | HOELGAARD Daniel | 77 |
2 | VAN ROOY Kenneth | 70 |
4 | DE VRIES Berden | 70 |
5 | CIEŚLIK Paweł | 65 |
8 | BUCHMANN Emanuel | 59 |
10 | ZIELIńSKI Kamil | 61 |
12 | POLNICKÝ Jiří | 68 |
13 | VAN MEIRHAEGHE Jef | 71 |
15 | SISR František | 72 |
17 | KOLÁŘ Michael | 90 |
19 | GUERIN Alexis | 64 |
21 | NYCH Artem | 74 |
23 | WIŚNIOWSKI Łukasz | 78 |
24 | BAŠKA Erik | 74 |
25 | VAN GESTEL Dries | 74 |
28 | FRISON Frederik | 84 |
31 | TUREK Daniel | 72 |
32 | KOCH Jonas | 75 |
35 | KATYRIN Roman | 65 |
36 | KOROŠEC Rok | 75 |
37 | KORSÆTH Truls Engen | 84 |
38 | NIKOLAEV Sergey | 66 |
43 | QUAST Ole | 67 |