Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Menten
2
68 kgČerný
3
75 kgKorošec
4
75 kgvan Schip
5
84 kgVan Dalen
6
70 kgFolsach
7
81 kgVinjebo
8
67 kgSchelling
9
61 kgThièry
10
67 kgBajc
12
65 kgPolnický
13
68 kgBugter
14
81 kgBais
15
66 kgQuaade
16
77 kgAuer
17
73 kgNõmmela
20
69 kgMager
21
60 kgNeuman
22
72 kgRogina
23
70 kgTybor
27
72 kgAaen Jørgensen
29
63 kgRekita
32
70 kgCieślik
33
65 kgStöhr
34
72 kg
2
68 kgČerný
3
75 kgKorošec
4
75 kgvan Schip
5
84 kgVan Dalen
6
70 kgFolsach
7
81 kgVinjebo
8
67 kgSchelling
9
61 kgThièry
10
67 kgBajc
12
65 kgPolnický
13
68 kgBugter
14
81 kgBais
15
66 kgQuaade
16
77 kgAuer
17
73 kgNõmmela
20
69 kgMager
21
60 kgNeuman
22
72 kgRogina
23
70 kgTybor
27
72 kgAaen Jørgensen
29
63 kgRekita
32
70 kgCieślik
33
65 kgStöhr
34
72 kg
Weight (KG) →
Result →
84
60
2
34
# | Rider | Weight (KG) |
---|---|---|
2 | MENTEN Milan | 68 |
3 | ČERNÝ Josef | 75 |
4 | KOROŠEC Rok | 75 |
5 | VAN SCHIP Jan-Willem | 84 |
6 | VAN DALEN Jason | 70 |
7 | FOLSACH Casper | 81 |
8 | VINJEBO Emil Mielke | 67 |
9 | SCHELLING Patrick | 61 |
10 | THIÈRY Cyrille | 67 |
12 | BAJC Andi | 65 |
13 | POLNICKÝ Jiří | 68 |
14 | BUGTER Luuc | 81 |
15 | BAIS Mattia | 66 |
16 | QUAADE Rasmus | 77 |
17 | AUER Daniel | 73 |
20 | NÕMMELA Aksel | 69 |
21 | MAGER Christian | 60 |
22 | NEUMAN Dominik | 72 |
23 | ROGINA Radoslav | 70 |
27 | TYBOR Patrik | 72 |
29 | AAEN JØRGENSEN Jonas | 63 |
32 | REKITA Szymon | 70 |
33 | CIEŚLIK Paweł | 65 |
34 | STÖHR Ján | 72 |