Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Schelling
1
61 kgKaňkovský
2
83 kgKukrle
3
73 kgButs
4
68 kgSteimle
5
73 kgČerný
6
75 kgPelikán
7
76 kgKorošec
8
75 kgStallaert
10
72 kgBárta
11
75 kgPodlaski
13
68 kgDewulf
14
74 kgHavik
15
66 kgPaterski
16
73 kgDe Pestel
17
74 kgColman
20
73 kgHuys
21
61 kgMarit
22
72 kgKaczmarek
23
66 kgNeuman
24
72 kgStachowiak
26
62 kgPiaskowy
27
60 kgBanaszek
28
79 kg
1
61 kgKaňkovský
2
83 kgKukrle
3
73 kgButs
4
68 kgSteimle
5
73 kgČerný
6
75 kgPelikán
7
76 kgKorošec
8
75 kgStallaert
10
72 kgBárta
11
75 kgPodlaski
13
68 kgDewulf
14
74 kgHavik
15
66 kgPaterski
16
73 kgDe Pestel
17
74 kgColman
20
73 kgHuys
21
61 kgMarit
22
72 kgKaczmarek
23
66 kgNeuman
24
72 kgStachowiak
26
62 kgPiaskowy
27
60 kgBanaszek
28
79 kg
Weight (KG) →
Result →
83
60
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | SCHELLING Patrick | 61 |
2 | KAŇKOVSKÝ Alois | 83 |
3 | KUKRLE Michael | 73 |
4 | BUTS Vitaliy | 68 |
5 | STEIMLE Jannik | 73 |
6 | ČERNÝ Josef | 75 |
7 | PELIKÁN János | 76 |
8 | KOROŠEC Rok | 75 |
10 | STALLAERT Joeri | 72 |
11 | BÁRTA Jan | 75 |
13 | PODLASKI Michał | 68 |
14 | DEWULF Stan | 74 |
15 | HAVIK Yoeri | 66 |
16 | PATERSKI Maciej | 73 |
17 | DE PESTEL Sander | 74 |
20 | COLMAN Alex | 73 |
21 | HUYS Laurens | 61 |
22 | MARIT Arne | 72 |
23 | KACZMAREK Jakub | 66 |
24 | NEUMAN Dominik | 72 |
26 | STACHOWIAK Adam | 62 |
27 | PIASKOWY Emanuel | 60 |
28 | BANASZEK Adrian | 79 |