Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
De Lie
1
78 kgStosz
2
70 kgvan der Meer
3
82 kgFretin
4
70 kgPelegrí
5
63 kgNeuman
6
72 kgBárta
7
79 kgStüssi
8
68 kgCima
10
70 kgOtruba
11
75 kgde Jong
12
72 kgFortin
13
78 kgHeming
14
68 kgJaniszewski
15
65 kgThurau
16
73 kgRyba
17
70 kgHabermann
18
74 kgVan Boven
19
68 kgLarsen
20
72 kgEising
22
80 kgSlock
26
78 kgLunder
27
78 kgGathemann
28
62 kgBabor
30
79 kg
1
78 kgStosz
2
70 kgvan der Meer
3
82 kgFretin
4
70 kgPelegrí
5
63 kgNeuman
6
72 kgBárta
7
79 kgStüssi
8
68 kgCima
10
70 kgOtruba
11
75 kgde Jong
12
72 kgFortin
13
78 kgHeming
14
68 kgJaniszewski
15
65 kgThurau
16
73 kgRyba
17
70 kgHabermann
18
74 kgVan Boven
19
68 kgLarsen
20
72 kgEising
22
80 kgSlock
26
78 kgLunder
27
78 kgGathemann
28
62 kgBabor
30
79 kg
Weight (KG) →
Result →
82
62
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | DE LIE Arnaud | 78 |
2 | STOSZ Patryk | 70 |
3 | VAN DER MEER Nick | 82 |
4 | FRETIN Milan | 70 |
5 | PELEGRÍ Óscar | 63 |
6 | NEUMAN Dominik | 72 |
7 | BÁRTA Tomáš | 79 |
8 | STÜSSI Colin | 68 |
10 | CIMA Damiano | 70 |
11 | OTRUBA Jakub | 75 |
12 | DE JONG Timo | 72 |
13 | FORTIN Filippo | 78 |
14 | HEMING Miká | 68 |
15 | JANISZEWSKI Sylwester | 65 |
16 | THURAU Sven | 73 |
17 | RYBA Jan | 70 |
18 | HABERMANN Richard | 74 |
19 | VAN BOVEN Luca | 68 |
20 | LARSEN Mathias Alexander Erik | 72 |
22 | EISING Tijmen | 80 |
26 | SLOCK Liam | 78 |
27 | LUNDER Eirik | 78 |
28 | GATHEMANN Albert | 62 |
30 | BABOR Daniel | 79 |