Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
van Sintmaartensdijk
2
77 kgBower
3
63 kgPollefliet
4
74 kgŤoupalík
5
65 kgJakoubek
8
72 kgKukrle
9
73 kgHansen
10
68 kgAskey
11
70 kgde Jong
13
72 kgBrennsæter
14
66 kgEgholm
15
69 kgZahálka
16
73 kgDebruyne
17
66 kgAugé
18
61 kgBoroš
20
69 kgWillems
22
67 kgRugovac
26
69 kgRitzinger
30
80 kg
2
77 kgBower
3
63 kgPollefliet
4
74 kgŤoupalík
5
65 kgJakoubek
8
72 kgKukrle
9
73 kgHansen
10
68 kgAskey
11
70 kgde Jong
13
72 kgBrennsæter
14
66 kgEgholm
15
69 kgZahálka
16
73 kgDebruyne
17
66 kgAugé
18
61 kgBoroš
20
69 kgWillems
22
67 kgRugovac
26
69 kgRitzinger
30
80 kg
Weight (KG) →
Result →
80
61
2
30
| # | Rider | Weight (KG) |
|---|---|---|
| 2 | VAN SINTMAARTENSDIJK Daan | 77 |
| 3 | BOWER Lewis | 63 |
| 4 | POLLEFLIET Gianluca | 74 |
| 5 | ŤOUPALÍK Adam | 65 |
| 8 | JAKOUBEK Tomáš | 72 |
| 9 | KUKRLE Michael | 73 |
| 10 | HANSEN Alexander Arnt | 68 |
| 11 | ASKEY Ben | 70 |
| 13 | DE JONG Timo | 72 |
| 14 | BRENNSÆTER Trym | 66 |
| 15 | EGHOLM Jakob | 69 |
| 16 | ZAHÁLKA Matěj | 73 |
| 17 | DEBRUYNE Ramses | 66 |
| 18 | AUGÉ Ronan | 61 |
| 20 | BOROŠ Michael | 69 |
| 22 | WILLEMS Thimo | 67 |
| 26 | RUGOVAC Denis | 69 |
| 30 | RITZINGER Felix | 80 |