Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 48
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Dina
2
67 kgJakoubek
3
72 kgŤoupalík
4
65 kgCamrda
6
63 kgKukrle
7
73 kgVanhoucke
9
65 kgVoltr
10
75 kgHansen
11
68 kgMartinsen
12
62 kgVysočan
13
71 kgZangerle
17
68 kgTracz
18
74 kgMráz
19
66 kgTelecký
20
73 kgWallin
21
78 kgRavnøy
22
78 kgDrege
23
78 kgVan de Wynkele
24
75 kgÅrnes
25
80 kg
2
67 kgJakoubek
3
72 kgŤoupalík
4
65 kgCamrda
6
63 kgKukrle
7
73 kgVanhoucke
9
65 kgVoltr
10
75 kgHansen
11
68 kgMartinsen
12
62 kgVysočan
13
71 kgZangerle
17
68 kgTracz
18
74 kgMráz
19
66 kgTelecký
20
73 kgWallin
21
78 kgRavnøy
22
78 kgDrege
23
78 kgVan de Wynkele
24
75 kgÅrnes
25
80 kg
Weight (KG) →
Result →
80
62
2
25
# | Rider | Weight (KG) |
---|---|---|
2 | DINA Márton | 67 |
3 | JAKOUBEK Tomáš | 72 |
4 | ŤOUPALÍK Adam | 65 |
6 | CAMRDA Karel | 63 |
7 | KUKRLE Michael | 73 |
9 | VANHOUCKE Harm | 65 |
10 | VOLTR Martin | 75 |
11 | HANSEN Alexander Arnt | 68 |
12 | MARTINSEN Toralf Rydningen | 62 |
13 | VYSOČAN Daniel | 71 |
17 | ZANGERLE Emanuel | 68 |
18 | TRACZ Szymon | 74 |
19 | MRÁZ Daniel | 66 |
20 | TELECKÝ Štěpán | 73 |
21 | WALLIN Rasmus Bøgh | 78 |
22 | RAVNØY Johan | 78 |
23 | DREGE André | 78 |
24 | VAN DE WYNKELE Lorenz | 75 |
25 | ÅRNES Daniel | 80 |