Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 20
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Dina
3
67 kgJakoubek
4
72 kgŤoupalík
5
65 kgZangerle
6
68 kgMunton
7
60 kgZahálka
8
73 kgCamrda
10
63 kgKukrle
11
73 kgWallin
13
78 kgVanhoucke
14
65 kgVoltr
15
75 kgHansen
16
68 kgMartinsen
17
62 kgVysočan
18
71 kgTracz
22
74 kgMráz
23
66 kgRavnøy
24
78 kgVan de Wynkele
25
75 kg
3
67 kgJakoubek
4
72 kgŤoupalík
5
65 kgZangerle
6
68 kgMunton
7
60 kgZahálka
8
73 kgCamrda
10
63 kgKukrle
11
73 kgWallin
13
78 kgVanhoucke
14
65 kgVoltr
15
75 kgHansen
16
68 kgMartinsen
17
62 kgVysočan
18
71 kgTracz
22
74 kgMráz
23
66 kgRavnøy
24
78 kgVan de Wynkele
25
75 kg
Weight (KG) →
Result →
78
60
3
25
| # | Rider | Weight (KG) |
|---|---|---|
| 3 | DINA Márton | 67 |
| 4 | JAKOUBEK Tomáš | 72 |
| 5 | ŤOUPALÍK Adam | 65 |
| 6 | ZANGERLE Emanuel | 68 |
| 7 | MUNTON Byron | 60 |
| 8 | ZAHÁLKA Matěj | 73 |
| 10 | CAMRDA Karel | 63 |
| 11 | KUKRLE Michael | 73 |
| 13 | WALLIN Rasmus Bøgh | 78 |
| 14 | VANHOUCKE Harm | 65 |
| 15 | VOLTR Martin | 75 |
| 16 | HANSEN Alexander Arnt | 68 |
| 17 | MARTINSEN Toralf Rydningen | 62 |
| 18 | VYSOČAN Daniel | 71 |
| 22 | TRACZ Szymon | 74 |
| 23 | MRÁZ Daniel | 66 |
| 24 | RAVNØY Johan | 78 |
| 25 | VAN DE WYNKELE Lorenz | 75 |