Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Haugland
4
74 kgRosenlund
5
72 kgPřidal
6
66 kgVysočan
7
71 kgMartinsen
10
62 kgKapela
15
70 kgKlismets
18
64 kgRavnøy
20
78 kgŻelazowski
21
68 kgFrątczak
22
70 kgBanaszak
28
64 kgWaliniak
29
71 kgMráz
33
66 kgLond
38
65 kgGadera
39
65 kgSivok
41
53 kgPomorski
44
76 kgKrukowski
46
69 kgSkladan
51
73 kgSchwarzbacher
52
72 kgMatuzevičius
65
69 kg
4
74 kgRosenlund
5
72 kgPřidal
6
66 kgVysočan
7
71 kgMartinsen
10
62 kgKapela
15
70 kgKlismets
18
64 kgRavnøy
20
78 kgŻelazowski
21
68 kgFrątczak
22
70 kgBanaszak
28
64 kgWaliniak
29
71 kgMráz
33
66 kgLond
38
65 kgGadera
39
65 kgSivok
41
53 kgPomorski
44
76 kgKrukowski
46
69 kgSkladan
51
73 kgSchwarzbacher
52
72 kgMatuzevičius
65
69 kg
Weight (KG) →
Result →
78
53
4
65
# | Rider | Weight (KG) |
---|---|---|
4 | HAUGLAND Kasper | 74 |
5 | ROSENLUND Stian | 72 |
6 | PŘIDAL Tomáš | 66 |
7 | VYSOČAN Daniel | 71 |
10 | MARTINSEN Toralf Rydningen | 62 |
15 | KAPELA Marek | 70 |
18 | KLISMETS Kārlis | 64 |
20 | RAVNØY Johan | 78 |
21 | ŻELAZOWSKI Michał | 68 |
22 | FRĄTCZAK Radosław | 70 |
28 | BANASZAK Maciej | 64 |
29 | WALINIAK Konrad | 71 |
33 | MRÁZ Daniel | 66 |
38 | LOND Daniel | 65 |
39 | GADERA Jan | 65 |
41 | SIVOK Tomáš | 53 |
44 | POMORSKI Michał | 76 |
46 | KRUKOWSKI Aleksander | 69 |
51 | SKLADAN Samuel | 73 |
52 | SCHWARZBACHER Matthias | 72 |
65 | MATUZEVIČIUS Žygimantas | 69 |