Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Vysočan
1
71 kgMartinsen
2
62 kgPřidal
3
66 kgHaugland
5
74 kgWaliniak
6
71 kgKapela
11
70 kgRosenlund
12
72 kgBanaszak
14
64 kgSivok
16
53 kgMráz
19
66 kgSchwarzbacher
22
72 kgKlismets
26
64 kgLond
27
65 kgRavnøy
37
78 kgKrukowski
42
69 kgFrątczak
45
70 kgGadera
48
65 kgPomorski
56
76 kg
1
71 kgMartinsen
2
62 kgPřidal
3
66 kgHaugland
5
74 kgWaliniak
6
71 kgKapela
11
70 kgRosenlund
12
72 kgBanaszak
14
64 kgSivok
16
53 kgMráz
19
66 kgSchwarzbacher
22
72 kgKlismets
26
64 kgLond
27
65 kgRavnøy
37
78 kgKrukowski
42
69 kgFrątczak
45
70 kgGadera
48
65 kgPomorski
56
76 kg
Weight (KG) →
Result →
78
53
1
56
# | Rider | Weight (KG) |
---|---|---|
1 | VYSOČAN Daniel | 71 |
2 | MARTINSEN Toralf Rydningen | 62 |
3 | PŘIDAL Tomáš | 66 |
5 | HAUGLAND Kasper | 74 |
6 | WALINIAK Konrad | 71 |
11 | KAPELA Marek | 70 |
12 | ROSENLUND Stian | 72 |
14 | BANASZAK Maciej | 64 |
16 | SIVOK Tomáš | 53 |
19 | MRÁZ Daniel | 66 |
22 | SCHWARZBACHER Matthias | 72 |
26 | KLISMETS Kārlis | 64 |
27 | LOND Daniel | 65 |
37 | RAVNØY Johan | 78 |
42 | KRUKOWSKI Aleksander | 69 |
45 | FRĄTCZAK Radosław | 70 |
48 | GADERA Jan | 65 |
56 | POMORSKI Michał | 76 |