Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 70
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Andrle
1
70 kgKirchen
2
68 kgKonečný
5
67 kgRasch
8
72 kgEl Nadi
9
74 kgDvorščík
12
68 kgAbdel Fatah
13
69 kgBroniš
14
74 kgNagy
18
52 kgMugerli
34
68 kgEfimkin
37
67 kgAbass
40
65 kgSchleck
41
65 kgRiška
49
73 kgKholafy
57
63 kgLipták
60
68 kgAug
63
83 kgLauk
78
77 kgMetlushenko
81
82 kg
1
70 kgKirchen
2
68 kgKonečný
5
67 kgRasch
8
72 kgEl Nadi
9
74 kgDvorščík
12
68 kgAbdel Fatah
13
69 kgBroniš
14
74 kgNagy
18
52 kgMugerli
34
68 kgEfimkin
37
67 kgAbass
40
65 kgSchleck
41
65 kgRiška
49
73 kgKholafy
57
63 kgLipták
60
68 kgAug
63
83 kgLauk
78
77 kgMetlushenko
81
82 kg
Weight (KG) →
Result →
83
52
1
81
# | Rider | Weight (KG) |
---|---|---|
1 | ANDRLE René | 70 |
2 | KIRCHEN Kim | 68 |
5 | KONEČNÝ Tomáš | 67 |
8 | RASCH Gabriel | 72 |
9 | EL NADI Amer | 74 |
12 | DVORŠČÍK Milan | 68 |
13 | ABDEL FATAH Mohamed | 69 |
14 | BRONIŠ Roman | 74 |
18 | NAGY Robert | 52 |
34 | MUGERLI Matej | 68 |
37 | EFIMKIN Vladimir | 67 |
40 | ABASS Mahmoud | 65 |
41 | SCHLECK Fränk | 65 |
49 | RIŠKA Martin | 73 |
57 | KHOLAFY Mohamed | 63 |
60 | LIPTÁK Miroslav | 68 |
63 | AUG Andrus | 83 |
78 | LAUK Andres | 77 |
81 | METLUSHENKO Yuri | 82 |