Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 38
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Kirchen
5
68 kgDvorščík
9
68 kgEfimkin
16
67 kgRasch
18
72 kgKonečný
20
67 kgAug
30
83 kgAbdel Fatah
31
69 kgEl Nadi
33
74 kgSchleck
37
65 kgRiška
38
73 kgAndrle
41
70 kgEfimkin
43
70 kgBroniš
49
74 kgAbass
50
65 kgNagy
51
52 kgMugerli
52
68 kgKholafy
67
63 kgCarlström
73
70 kgLipták
87
68 kgMetlushenko
88
82 kgLauk
89
77 kgLíška
99
85 kg
5
68 kgDvorščík
9
68 kgEfimkin
16
67 kgRasch
18
72 kgKonečný
20
67 kgAug
30
83 kgAbdel Fatah
31
69 kgEl Nadi
33
74 kgSchleck
37
65 kgRiška
38
73 kgAndrle
41
70 kgEfimkin
43
70 kgBroniš
49
74 kgAbass
50
65 kgNagy
51
52 kgMugerli
52
68 kgKholafy
67
63 kgCarlström
73
70 kgLipták
87
68 kgMetlushenko
88
82 kgLauk
89
77 kgLíška
99
85 kg
Weight (KG) →
Result →
85
52
5
99
# | Rider | Weight (KG) |
---|---|---|
5 | KIRCHEN Kim | 68 |
9 | DVORŠČÍK Milan | 68 |
16 | EFIMKIN Vladimir | 67 |
18 | RASCH Gabriel | 72 |
20 | KONEČNÝ Tomáš | 67 |
30 | AUG Andrus | 83 |
31 | ABDEL FATAH Mohamed | 69 |
33 | EL NADI Amer | 74 |
37 | SCHLECK Fränk | 65 |
38 | RIŠKA Martin | 73 |
41 | ANDRLE René | 70 |
43 | EFIMKIN Alexander | 70 |
49 | BRONIŠ Roman | 74 |
50 | ABASS Mahmoud | 65 |
51 | NAGY Robert | 52 |
52 | MUGERLI Matej | 68 |
67 | KHOLAFY Mohamed | 63 |
73 | CARLSTRÖM Kjell | 70 |
87 | LIPTÁK Miroslav | 68 |
88 | METLUSHENKO Yuri | 82 |
89 | LAUK Andres | 77 |
99 | LÍŠKA Tomáš | 85 |