Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 81
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Andrle
1
70 kgKonečný
2
67 kgKirchen
8
68 kgEl Nadi
10
74 kgDvorščík
11
68 kgNagy
12
52 kgRasch
13
72 kgAbdel Fatah
14
69 kgBroniš
16
74 kgKholafy
39
63 kgAbass
41
65 kgLipták
42
68 kgSchleck
43
65 kgMugerli
48
68 kgEfimkin
52
67 kgLauk
61
77 kgMetlushenko
63
82 kgAug
76
83 kgRiška
82
73 kg
1
70 kgKonečný
2
67 kgKirchen
8
68 kgEl Nadi
10
74 kgDvorščík
11
68 kgNagy
12
52 kgRasch
13
72 kgAbdel Fatah
14
69 kgBroniš
16
74 kgKholafy
39
63 kgAbass
41
65 kgLipták
42
68 kgSchleck
43
65 kgMugerli
48
68 kgEfimkin
52
67 kgLauk
61
77 kgMetlushenko
63
82 kgAug
76
83 kgRiška
82
73 kg
Weight (KG) →
Result →
83
52
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | ANDRLE René | 70 |
2 | KONEČNÝ Tomáš | 67 |
8 | KIRCHEN Kim | 68 |
10 | EL NADI Amer | 74 |
11 | DVORŠČÍK Milan | 68 |
12 | NAGY Robert | 52 |
13 | RASCH Gabriel | 72 |
14 | ABDEL FATAH Mohamed | 69 |
16 | BRONIŠ Roman | 74 |
39 | KHOLAFY Mohamed | 63 |
41 | ABASS Mahmoud | 65 |
42 | LIPTÁK Miroslav | 68 |
43 | SCHLECK Fränk | 65 |
48 | MUGERLI Matej | 68 |
52 | EFIMKIN Vladimir | 67 |
61 | LAUK Andres | 77 |
63 | METLUSHENKO Yuri | 82 |
76 | AUG Andrus | 83 |
82 | RIŠKA Martin | 73 |