Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 67
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Larsson
1
77 kgRoberts
2
71 kgMuravyev
5
75 kgValach
15
75 kgNagy
16
52 kgBenčík
21
73 kgKaggestad
22
66 kgRasch
24
72 kgWillems
25
67 kgMcLeod
27
66 kgAbakoumov
31
68 kgTamouridis
42
70 kgClerc
46
71 kgBroniš
49
74 kgAug
63
83 kgCadamuro
65
78 kgMcGrory
66
73 kgDavis
74
73 kgHrazdira
83
77 kg
1
77 kgRoberts
2
71 kgMuravyev
5
75 kgValach
15
75 kgNagy
16
52 kgBenčík
21
73 kgKaggestad
22
66 kgRasch
24
72 kgWillems
25
67 kgMcLeod
27
66 kgAbakoumov
31
68 kgTamouridis
42
70 kgClerc
46
71 kgBroniš
49
74 kgAug
63
83 kgCadamuro
65
78 kgMcGrory
66
73 kgDavis
74
73 kgHrazdira
83
77 kg
Weight (KG) →
Result →
83
52
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | LARSSON Gustav Erik | 77 |
2 | ROBERTS Luke | 71 |
5 | MURAVYEV Dmitriy | 75 |
15 | VALACH Ján | 75 |
16 | NAGY Robert | 52 |
21 | BENČÍK Petr | 73 |
22 | KAGGESTAD Mads | 66 |
24 | RASCH Gabriel | 72 |
25 | WILLEMS Frederik | 67 |
27 | MCLEOD Ian | 66 |
31 | ABAKOUMOV Igor | 68 |
42 | TAMOURIDIS Ioannis | 70 |
46 | CLERC Aurélien | 71 |
49 | BRONIŠ Roman | 74 |
63 | AUG Andrus | 83 |
65 | CADAMURO Simone | 78 |
66 | MCGRORY Scott | 73 |
74 | DAVIS Allan | 73 |
83 | HRAZDIRA Michal | 77 |