Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 82
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Clerc
1
71 kgAug
2
83 kgRoberts
3
71 kgAbakoumov
8
68 kgRiška
14
73 kgTamouridis
16
70 kgMcGrory
18
73 kgMcLeod
28
66 kgValach
30
75 kgBenčík
54
73 kgLarsson
56
77 kgNagy
62
52 kgBroniš
66
74 kgMuravyev
67
75 kgCadamuro
73
78 kgDavis
74
73 kgRasch
78
72 kgKaggestad
81
66 kgHrazdira
84
77 kgWillems
87
67 kg
1
71 kgAug
2
83 kgRoberts
3
71 kgAbakoumov
8
68 kgRiška
14
73 kgTamouridis
16
70 kgMcGrory
18
73 kgMcLeod
28
66 kgValach
30
75 kgBenčík
54
73 kgLarsson
56
77 kgNagy
62
52 kgBroniš
66
74 kgMuravyev
67
75 kgCadamuro
73
78 kgDavis
74
73 kgRasch
78
72 kgKaggestad
81
66 kgHrazdira
84
77 kgWillems
87
67 kg
Weight (KG) →
Result →
83
52
1
87
# | Rider | Weight (KG) |
---|---|---|
1 | CLERC Aurélien | 71 |
2 | AUG Andrus | 83 |
3 | ROBERTS Luke | 71 |
8 | ABAKOUMOV Igor | 68 |
14 | RIŠKA Martin | 73 |
16 | TAMOURIDIS Ioannis | 70 |
18 | MCGRORY Scott | 73 |
28 | MCLEOD Ian | 66 |
30 | VALACH Ján | 75 |
54 | BENČÍK Petr | 73 |
56 | LARSSON Gustav Erik | 77 |
62 | NAGY Robert | 52 |
66 | BRONIŠ Roman | 74 |
67 | MURAVYEV Dmitriy | 75 |
73 | CADAMURO Simone | 78 |
74 | DAVIS Allan | 73 |
78 | RASCH Gabriel | 72 |
81 | KAGGESTAD Mads | 66 |
84 | HRAZDIRA Michal | 77 |
87 | WILLEMS Frederik | 67 |