Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 77
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Cadamuro
1
78 kgAug
2
83 kgAbakoumov
5
68 kgClerc
6
71 kgRoberts
8
71 kgTamouridis
18
70 kgDavis
20
73 kgMcGrory
22
73 kgMcLeod
23
66 kgRiška
27
73 kgValach
32
75 kgBenčík
35
73 kgLarsson
44
77 kgRasch
50
72 kgWillems
52
67 kgNagy
57
52 kgKaggestad
61
66 kgMuravyev
62
75 kgBroniš
66
74 kgHrazdira
112
77 kg
1
78 kgAug
2
83 kgAbakoumov
5
68 kgClerc
6
71 kgRoberts
8
71 kgTamouridis
18
70 kgDavis
20
73 kgMcGrory
22
73 kgMcLeod
23
66 kgRiška
27
73 kgValach
32
75 kgBenčík
35
73 kgLarsson
44
77 kgRasch
50
72 kgWillems
52
67 kgNagy
57
52 kgKaggestad
61
66 kgMuravyev
62
75 kgBroniš
66
74 kgHrazdira
112
77 kg
Weight (KG) →
Result →
83
52
1
112
# | Rider | Weight (KG) |
---|---|---|
1 | CADAMURO Simone | 78 |
2 | AUG Andrus | 83 |
5 | ABAKOUMOV Igor | 68 |
6 | CLERC Aurélien | 71 |
8 | ROBERTS Luke | 71 |
18 | TAMOURIDIS Ioannis | 70 |
20 | DAVIS Allan | 73 |
22 | MCGRORY Scott | 73 |
23 | MCLEOD Ian | 66 |
27 | RIŠKA Martin | 73 |
32 | VALACH Ján | 75 |
35 | BENČÍK Petr | 73 |
44 | LARSSON Gustav Erik | 77 |
50 | RASCH Gabriel | 72 |
52 | WILLEMS Frederik | 67 |
57 | NAGY Robert | 52 |
61 | KAGGESTAD Mads | 66 |
62 | MURAVYEV Dmitriy | 75 |
66 | BRONIŠ Roman | 74 |
112 | HRAZDIRA Michal | 77 |