Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 102
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Aug
1
83 kgAbakoumov
3
68 kgMcLeod
18
66 kgTamouridis
23
70 kgValach
24
75 kgRoberts
28
71 kgLarsson
37
77 kgClerc
40
71 kgRasch
51
72 kgWillems
55
67 kgCadamuro
71
78 kgBroniš
75
74 kgMuravyev
76
75 kgNagy
86
52 kgMcGrory
94
73 kgBenčík
96
73 kgKaggestad
97
66 kgHrazdira
113
77 kgDavis
114
73 kg
1
83 kgAbakoumov
3
68 kgMcLeod
18
66 kgTamouridis
23
70 kgValach
24
75 kgRoberts
28
71 kgLarsson
37
77 kgClerc
40
71 kgRasch
51
72 kgWillems
55
67 kgCadamuro
71
78 kgBroniš
75
74 kgMuravyev
76
75 kgNagy
86
52 kgMcGrory
94
73 kgBenčík
96
73 kgKaggestad
97
66 kgHrazdira
113
77 kgDavis
114
73 kg
Weight (KG) →
Result →
83
52
1
114
# | Rider | Weight (KG) |
---|---|---|
1 | AUG Andrus | 83 |
3 | ABAKOUMOV Igor | 68 |
18 | MCLEOD Ian | 66 |
23 | TAMOURIDIS Ioannis | 70 |
24 | VALACH Ján | 75 |
28 | ROBERTS Luke | 71 |
37 | LARSSON Gustav Erik | 77 |
40 | CLERC Aurélien | 71 |
51 | RASCH Gabriel | 72 |
55 | WILLEMS Frederik | 67 |
71 | CADAMURO Simone | 78 |
75 | BRONIŠ Roman | 74 |
76 | MURAVYEV Dmitriy | 75 |
86 | NAGY Robert | 52 |
94 | MCGRORY Scott | 73 |
96 | BENČÍK Petr | 73 |
97 | KAGGESTAD Mads | 66 |
113 | HRAZDIRA Michal | 77 |
114 | DAVIS Allan | 73 |