Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 55
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Larsson
1
77 kgRoberts
2
71 kgMuravyev
5
75 kgHrazdira
16
77 kgKaggestad
17
66 kgWillems
22
67 kgRasch
25
72 kgValach
29
75 kgNagy
31
52 kgTamouridis
38
70 kgBenčík
40
73 kgMcLeod
54
66 kgClerc
58
71 kgBroniš
62
74 kgAbakoumov
71
68 kgAug
99
83 kgCadamuro
108
78 kgMcGrory
109
73 kgDavis
116
73 kg
1
77 kgRoberts
2
71 kgMuravyev
5
75 kgHrazdira
16
77 kgKaggestad
17
66 kgWillems
22
67 kgRasch
25
72 kgValach
29
75 kgNagy
31
52 kgTamouridis
38
70 kgBenčík
40
73 kgMcLeod
54
66 kgClerc
58
71 kgBroniš
62
74 kgAbakoumov
71
68 kgAug
99
83 kgCadamuro
108
78 kgMcGrory
109
73 kgDavis
116
73 kg
Weight (KG) →
Result →
83
52
1
116
# | Rider | Weight (KG) |
---|---|---|
1 | LARSSON Gustav Erik | 77 |
2 | ROBERTS Luke | 71 |
5 | MURAVYEV Dmitriy | 75 |
16 | HRAZDIRA Michal | 77 |
17 | KAGGESTAD Mads | 66 |
22 | WILLEMS Frederik | 67 |
25 | RASCH Gabriel | 72 |
29 | VALACH Ján | 75 |
31 | NAGY Robert | 52 |
38 | TAMOURIDIS Ioannis | 70 |
40 | BENČÍK Petr | 73 |
54 | MCLEOD Ian | 66 |
58 | CLERC Aurélien | 71 |
62 | BRONIŠ Roman | 74 |
71 | ABAKOUMOV Igor | 68 |
99 | AUG Andrus | 83 |
108 | CADAMURO Simone | 78 |
109 | MCGRORY Scott | 73 |
116 | DAVIS Allan | 73 |