Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Sosenka
1
82 kgZamana
2
74 kgKrupa
3
74 kgKohut
4
65 kgRomanik
6
62 kgBrożyna
7
65 kgPiątek
8
71 kgBroniš
9
74 kgGaliński
10
63 kgKonečný
11
67 kgJurčo
13
69 kgRoberts
16
71 kgMori
17
77 kgLaverde
21
63 kgRiška
27
73 kgLöfkvist
29
70 kgGrabsch
32
81 kgHansen
37
72 kgNagy
46
52 kgMüller
51
79 kgValach
55
75 kgLjungblad
57
70 kgBenčík
58
73 kgCurvers
62
73 kgRaboň
70
74 kg
1
82 kgZamana
2
74 kgKrupa
3
74 kgKohut
4
65 kgRomanik
6
62 kgBrożyna
7
65 kgPiątek
8
71 kgBroniš
9
74 kgGaliński
10
63 kgKonečný
11
67 kgJurčo
13
69 kgRoberts
16
71 kgMori
17
77 kgLaverde
21
63 kgRiška
27
73 kgLöfkvist
29
70 kgGrabsch
32
81 kgHansen
37
72 kgNagy
46
52 kgMüller
51
79 kgValach
55
75 kgLjungblad
57
70 kgBenčík
58
73 kgCurvers
62
73 kgRaboň
70
74 kg
Weight (KG) →
Result →
82
52
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | SOSENKA Ondřej | 82 |
2 | ZAMANA Cezary | 74 |
3 | KRUPA Dawid | 74 |
4 | KOHUT Sławomir | 65 |
6 | ROMANIK Radosław | 62 |
7 | BROŻYNA Tomasz | 65 |
8 | PIĄTEK Zbigniew | 71 |
9 | BRONIŠ Roman | 74 |
10 | GALIŃSKI Marek | 63 |
11 | KONEČNÝ Tomáš | 67 |
13 | JURČO Matej | 69 |
16 | ROBERTS Luke | 71 |
17 | MORI Massimiliano | 77 |
21 | LAVERDE Luis Felipe | 63 |
27 | RIŠKA Martin | 73 |
29 | LÖFKVIST Thomas | 70 |
32 | GRABSCH Ralf | 81 |
37 | HANSEN Adam | 72 |
46 | NAGY Robert | 52 |
51 | MÜLLER Martin | 79 |
55 | VALACH Ján | 75 |
57 | LJUNGBLAD Jonas | 70 |
58 | BENČÍK Petr | 73 |
62 | CURVERS Roy | 73 |
70 | RABOŇ František | 74 |